Lecture 22. 9. April 2018

Due to the antisymmetry (5.10) we can define a matrix of curvature-forms
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Inserting the components of the Riemann tensor from eq. (5.14) gives
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The connection forms:
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The curvature forms can now be written as:
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This is Cartans 2nd structure equation.



Example. The Riemann curvature tensor of a spherical surface calculated from
Cartan’s structure equations

Let r=R be the radius of the spherical surface. The calculation is performed in 5 steps.

1. Write down the line element and introduce a form basis dual to an orthonormal
vector basis.

0=’ @ +0’ ® ' =R dO®d0+R*sin’ Odp ®dp

giving
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2. Use Cartan’s 1. structure equation, do" =" AQ" , to calculate the structure forms.
Since R is constant and using Poincare’s lemma and the antisymmetry of the
connection forms we get
do’ =0=0o’ /\f_lé,;,, giving 5_22 =f(0,9)e”,
where the function f(6,¢) is to be determined from the antisymmetry of the
connection forms.
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Using that (_22 =0, =—Qy =—Q%, we get f(6,0) =%%, 9(6,9)=0. Hence
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The reason for going back to coordinate basis here is that then it is easier to calculate
the exterior derivative dQ’,.

3. Calculate the Riemann curvature forms from Cartan’s 2. structure equation.
R, =dQ’ 10’ AQ’, =dQ’ . =d(cosOdp) = —sin0dO ndp = —— o na’ =R,
R%, =dQ", +Q°, AQ”, =dQ°; = d(cosOdyp) = —sinfd ndp=——z @ A’ =-R";.
4. Calculate the non-vanishing components of the Riemann tensor from

a_ / o S : . 0 _ pd _ 0 _ 7 _
R";=(1/2)R",,&" Acd . This gives R oo =Ras="R W_—R“’éé@_ﬁ.

5. Calculate the components of the Ricci curvature tensor and the Ricci curvature scalar.

Riy=Ros=rz + R=R'y+R ==



Torsion

The torsion operator T is defined by

TuAnv)=Vyv—-Vyu—[|u,v|. (6.131)

The operator T is a two-form with vector components
T(uAv)=— (FPW — F"’w — cF’W) utve,. (6.132)

Introducing the scalar torsion components 7%, by (using the sign convention
of [MTW?73])

T(uAv)=T%, u'v"e,, (6.133)
we have
1, =I%, —1I", —c,.. (6.134)
In a coordinate basis ¢, = 0, so that
™, =1, -TI", (6.135)

The spacetime of the general theory of relativity is assumed to be torsion
free (we will later see that in this case the connection is compatible with the

metric). Then the connection coefficients are related to the structure constants
by

2, =19, — T2, (6.136)

and in the special case where we are in a coordinate basis, the structure co-
efficients vanish, and the Christoffel symbols are symmetric in their lower
indices.

From egs. (6.133) and (6.134) follow that the torsion operator has the com-
ponent form

T =
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(T4, —T7, —ch,) e, @ wh Aw”. (6.177)



Inserting eqs. (6.165) and (6.176) we get

T=e,® (dw” 4+ QF, NW").

(6.178)
The torsion two-forms T* are defined by
T=e,®T". (6.179)
Hence,
T’ = dw” + QF, Nw". (6.180)

A torsion-free space is called Riemannian. In general relativity spacetime is
assumed to be Riemannian.

7.5 The equation of geodesic deviation

Consider two nearby geodesic curves, both parametrised by a parameter A.
Let s be a vector connecting points on the two curves with the same value

of A. The connecting vector s is said to measure the geodesic deviation of the
curves.

Figure 7.5: The two solid lines are neighbouring geodesics. They are connected by
an infinitesimal vector s that obeys the equation of geodesic deviation



In order to deduce an equation describing how the geodesic deviation
varies along the curves, we consider the covariant directional derivative of
s along the curve Vs where u is the tangent vector to the curve.

Let u and s be coordinate basis vectors of a coordinate system. Then
ls,u| =0, so that

Vus = Vsu (7.100)
giving
VuVes =V, Veu (7.101)
Furthermore
R(u,s)u = ([Vu, Vs — V[u‘s]) u
= [Vu.Vslu. (7.102)
Thus
VuVus =VVyu + R(u,s)u. (7.103)

Since the curves are geodesics V,u = 0, and the equation reduces to

VuVus+R(s,uju=20 (7.104)

where we have used the antisymmetry of the Riemann tensor. Equation (7.104)
is called the equation of geodesic deviation. The component form of the equation
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(W) + R u®sVu” = 0. (7.105)

This equation shows that the Riemann tensor can be determined entirely from
measurements of geodesic deviation.

In comoving geodesic normal coordinates with u = (1.0,0.0) the equation
reduces to

(W) LRy =0, (7.106)

In lecture 2 we found the equation for the tidal acceleration, i.e. the relative acceleration
between two nearby particles
¢
dt’ ox,0x,




where ¢’ is the the j-component of the separation vector, and @ is the Newtonian

gravitational potential. Comparing these equations we see that in the Newtonian limit the
non-vanishing components of the Riemann curvature tensor of spacetime are
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In Newtonian physics the acceleration of gravity is given by

g=-V¢ or g':—a—¢.
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Comparing with the third equation in Lecture 21 we see that with a locally Cartesian
coordinate system the non-vanishing Christoffel symbols are
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The Christoffel symbols are the first derivatives of the Newtonian gravitational potential and
the components of the Riemann curvature tensor the second derivatives. Hence in the
Newtonian approximation the non-vanishing components of the curvature tensor are
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The Newtonian tidal tensor

There are several definitions of the Newtonian tidal tensor which are mathematically
equivalent. One is as follows. It is a tensor of rank 2 with components
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i.e. £, is minus the change of the i-component of the acceleration of gravity due to a

displacement in the j-direction. Since
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The components of the Newtonian tidal tensor may be written
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It follows that the Newtonian tidal tensor is symmetrical.

The Newtonian gravitational field equation
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can now be written
E'=47Gp.

Also it follows that the equation of tidal acceleration can be written
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and that in the Newtonian limit the tidal tensor is related to the Riemann curvature tensor of
spacetime by

R(i)jo = Eij .
5.3 The Ricci identity
QL‘R'L:‘,Q‘J:.]J Y= (vavﬁ - vivu - v[e}afg})(frf) (550)
In coordinate basis this is reduced to
e_;n“‘RFchﬁ'? AY = (‘4“;‘;‘3@ - ‘4}?@;’,‘3)6_#:‘ ) (551)
where
A‘faﬁ = (4'“3)0 (5.52)

The Ricci identity on component form is:

‘AVR'L;;Q‘L'? = ‘AF:’E’Q - ‘4#?0,;3 (553)
We can write this as:
o 1 p
A= R A 6w A (5.54)

This shows us that the 2nd exterior derivative of a vector is equal to zero only
in a flat space. Equations (5.53) and (5.54) both represents the Ricci identity.

In a space with torsion the Ricci identity (5.53) takes the form
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5.4 Bianchi’s 1st identity

Cartan’s 1st structure equation:

(5.56)

Exterior differentiation of (5.55) and use of Poincaré’s lemma (4.16) gives:
(& w = 0)

0=dQ Aw” — W\ Adw (5.57)
Use of (5.55) gives:
dV AW+ QN AQY AW =0 (5.58)
From this we see that
(49, + X ND) Aw” =0 (5.59)

We now get Bianchi’s 1st identity:

R, Aw” =0 (5.60)

On component form Bianchi’s 1st identity is
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The component equation is: (remember the anti symmetry in « and j3)

B
R [vas] = 0 (562)
or
RF:;Q‘L'] + Rﬁ;ﬁy + RﬁjévajL =0 (563)
where the anti symmetry R/ ; = — R/ ; has been used. Without this anti

symmetry we would have gotten six, and not three, terms in this equation.

It may be noted that in a space with torsion Bianchi’s 1. identity takes the form

R', A& =dT" +Q', AT



