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Example. The Riemann curvature tensor of a spherical surface calculated from 

Cartan’s structure equations 

Let r R  be the radius of the spherical surface. The calculation is performed in 5 steps. 

1. Write down the line element and introduce a form basis dual to an orthonormal 

vector basis. 
ˆ ˆ ˆ ˆ2 2 2 2sindl R d d R d d
   

                 

giving 
ˆ ˆ, sinRd R d        

2. Use Cartan’s 1. structure equation, d
  

   , to calculate the structure forms. 

Since R is constant and using Poincare’s lemma and the antisymmetry of the 

connection forms we get 
ˆ ˆˆ

ˆ0d
  

    , giving  
ˆ ˆ

ˆ ,f
 

     , 

where the function  ,f    is to be determined from the antisymmetry of the 

connection forms.  

ˆ ˆˆ ˆ ˆ
ˆ

1 cos
cos

sin
d R d d

R

    




      


      , giving  

ˆˆ ˆ
ˆ

1 cos
,

sin
g

R

  




   


   . 

Using that 
ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ
 

          we get    
1 cos

, , , 0
sin

f g
R


   


  . Hence 

ˆˆ ˆ
ˆ ˆ

1 cos
cos

sin
d

R

  

 


  


     . 

The reason for going back to coordinate basis here is that then it is easier to calculate 

the exterior derivative 
ˆ
ˆd



 . 

3. Calculate the Riemann curvature forms from Cartan’s 2. structure equation. 

 
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆˆ ˆ ˆˆ ˆ 2

1
cos sinR d d d d d d R

R

       

                          . 

4. Calculate the non-vanishing components of the Riemann tensor from 

 
ˆ

ˆ 1 / 2R R
  
    . This gives 

ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ 2ˆ ˆ ˆ ˆ ˆ ˆ

1
R R R R

R
   

   
      . 

5. Calculate the components of the Ricci curvature tensor and the Ricci curvature scalar. 

ˆ ˆ
ˆˆ ˆ ˆˆ ˆ 2 2

1 2
,R R R R R

R R
 

  
     . 
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Torsion 
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A torsion-free space is called Riemannian. In general relativity spacetime is 

assumed to be Riemannian. 
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   In lecture 2 we found the equation for the tidal acceleration, i.e. the relative acceleration 

between two nearby particles 

                                                                           

2 2

2

k
i

i k

d

dt x x

 





 
.                             
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where j  is the the j-component of the separation vector, and   is the Newtonian 

gravitational potential. Comparing these equations we see that in the Newtonian limit the 

non-vanishing components of the Riemann curvature tensor of spacetime are 

2

0 0
i

j j
i

R
x x



 

. 

   In Newtonian physics the acceleration of gravity is given by  

i

i

g or g
x





   


. 

Comparing with the third equation in Lecture 21 we see that with a locally Cartesian 

coordinate system the non-vanishing Christoffel symbols are 

00
i

ix


 


. 

The Christoffel symbols are the first derivatives of the Newtonian gravitational potential and 

the components of the Riemann curvature tensor the second derivatives. Hence in the 

Newtonian approximation the non-vanishing components of the curvature tensor are  

00
0 0

i
i

j j
R

x





. 

The Newtonian tidal tensor 

There are several definitions of the Newtonian tidal tensor which are mathematically 

equivalent. One is as follows. It is a tensor of rank 2 with components  

i
i j j

g
E

x


 


, 

i.e. i jE  is minus the change of the i-component of the acceleration of gravity due to a 

displacement in the j-direction. Since 

i i
g

x


 


 

The components of the Newtonian tidal tensor may be written 

2

i j i j
E

x x



 

. 

It follows that the Newtonian tidal tensor is symmetrical.  

   The Newtonian gravitational field equation 
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2
2 4

i
i

G
x x


  


  

 
 

can now be written 

4i
iE G  . 

Also it follows that the equation of tidal acceleration can be written 

2

2

k
k i

i

d
E

dt


 , 

and that in the Newtonian limit the tidal tensor is related to the Riemann curvature tensor of 

spacetime by 

0 0
i i

j jR E . 

 

 

 

In a space with torsion the Ricci identity (5.53) takes the form 

; ; ;A R A A T A     

       . 
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It may be noted that in a space with torsion Bianchi’s 1. identity takes the form 

R dT T
    

     . 


