Lecture 23. 10. April 2018

5.5 Bianchi's 2nd identity

Exterior differentiation of $(5.56) \Rightarrow$

$$\frac{d R^{\mu}_{\ \nu} = R^{\mu}_{\ \lambda} \wedge \Omega^{\lambda}_{\ \nu} - \Omega^{\mu}_{\ \rho} \wedge \Omega^{\rho}_{\ \lambda} \wedge \Omega^{\lambda}_{\ \nu} - \Omega^{\mu}_{\ \lambda} \wedge R^{\lambda}_{\ \nu} + \Omega^{\mu}_{\ \lambda} \wedge \Omega^{\lambda}_{\ \rho} \wedge \Omega^{\rho}_{\ \nu}$$

$$= R^{\mu}_{\ \lambda} \wedge \Omega^{\lambda}_{\ \nu} - \Omega^{\mu}_{\ \lambda} \wedge R^{\lambda}_{\ \nu} \tag{5.64}$$

We now have Bianchi's 2nd identity as a form equation:

$$\underline{d}\,\underline{R}^{\mu}_{\ \nu} + \underline{\Omega}^{\mu}_{\ \lambda} \wedge \underline{R}^{\lambda}_{\ \nu} - \underline{R}^{\mu}_{\ \lambda} \wedge \underline{\Omega}^{\lambda}_{\ \nu} = 0 \tag{5.65}$$

As a component equation Bianchi's 2nd identity is given by

$$R^{\mu}_{\nu[\alpha\beta;\gamma]} = 0 \tag{5.66}$$

Definition 5.5.1 (Contraction)

'Contraction' is a tensor operation defined by

$$R_{\nu\beta} \equiv R^{\mu}_{\ \nu\mu\beta} \tag{5.67}$$

We must here have summation over μ . What we do, then, is constructing a new tensor from another given tensor, with a rank 2 lower than the given one.

The tensor with components $R_{\nu\beta}$ is called the Ricci curvature tensor. Another contraction gives the Ricci curvature scalar, $R = R^{\mu}_{\mu}$.

Riemann curvature tensor has four symmetries. The definition of the Riemann tensor implies that $R^{\mu}_{\nu\alpha\beta} = -R^{\mu}_{\nu\beta\alpha}$ Bianchi's 1st identity: $R^{\mu}_{[\nu\alpha\beta]} = 0$ From Cartan's 2nd structure equation follows

$$\underline{R}_{\mu\nu} = \underline{d\Omega}_{\mu\nu} + \underline{\Omega}_{\mu\lambda} \wedge \underline{\Omega}_{\nu}^{\lambda}
\Rightarrow R_{\mu\nu\alpha\beta} = -R_{\nu\mu\alpha\beta}$$
(5.68)

By choosing a locally Cartesian coordinate system in an inertial frame we get the following expression for the components of the Riemann curvature tensor:

$$R_{\mu\nu\alpha\beta} = \frac{1}{2} (g_{\mu\beta,\nu\alpha} - g_{\mu\alpha,\nu\beta} + g_{\nu\alpha,\mu\beta} - g_{\nu\beta,\mu\alpha})$$
 (5.69)

from which it follows that $R_{\mu\nu\alpha\beta} = R_{\alpha\beta\mu\nu}$. Contraction of μ and α leads to:

$$R^{\alpha}_{\nu\alpha\beta} = R^{\alpha}_{\beta\alpha\nu}$$

$$\Rightarrow R_{\nu\beta} = R_{\beta\nu}$$
(5.70)

i.e. the Ricci tensor is symmetric. In 4-D the Ricci tensor has 10 independent components.

In 4-dimensional spacetime the four symmetries of the Riemann curvature tensor reduce the number of independent components from 256 to 20.

6.1 Energy-momentum conservation

6.1.1 Newtonian fluid

Energy-momentum conservation for a Newtonian fluid in terms of the divergence of the energy momentum tensor can be shown as follows. The total derivative of a velocity field is

$$\frac{D\vec{v}}{Dt} \equiv \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} \tag{6.1}$$

 $\frac{\partial \vec{v}}{\partial t}$ is the local derivative which gives the change in \vec{v} as a function of time at a given point in space. $(\vec{v} \cdot \vec{\nabla})\vec{v}$ is called the **convective** derivative of \vec{v} . It represents the change of \vec{v} for a moving fluid particle due to the inhomogeneity of the fluid velocity field. In component notation the above become

$$\frac{Dv^i}{Dt} \equiv \frac{\partial v^i}{\partial t} + v^j \frac{\partial v^i}{\partial x^j} \tag{6.2}$$

The continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \quad \text{or} \quad \frac{\partial \rho}{\partial t} + \frac{\partial (\rho v^i)}{\partial x^i} = 0 \tag{6.3}$$

Euler's equation of motion (ignoring gravity)

$$\rho \frac{D\vec{v}}{Dt} = -\vec{\nabla}p \quad \text{or} \quad \rho \left(\frac{\partial v^i}{\partial t} + v^j \frac{\partial v^i}{\partial x^j} \right) = -\frac{\partial p}{\partial x^i}$$
 (6.4)

The **energy momentum tensor** is a symmetric tensor of rank 2 that describes material characteristics.

$$T^{\mu\nu} = \begin{pmatrix} T^{00} & T^{01} & T^{02} & T^{03} \\ T^{10} & T^{11} & T^{12} & T^{13} \\ T^{20} & T^{21} & T^{22} & T^{23} \\ T^{30} & T^{31} & T^{32} & T^{33} \end{pmatrix}$$
(6.5)

 $c \equiv 1$

 T^{00} represents energy density.

 T^{i0} represents momentum density.

 T^{ii} represents pressure $(T^{ii} > 0)$.

 T^{ii} represents stress $(T^{ii} < 0)$.

 T^{ij} represents shear forces $(i \neq j)$.

Example 6.1.1 (Energy momentum tensor for a Newtonian fluid)

$$T^{00} = \rho \qquad T^{i0} = \rho v^i$$

$$T^{ij} = \rho v^i v^j + \rho \delta^{ij}$$
(6.6)

where p is pressure, assumed isotropic here. We choose a locally Cartesian coordinate system in an inertial frame such that the covariant derivatives are reduced to partial derivatives. The divergence of the momentum energy tensor, $T^{\mu\nu}_{;\nu}$ has 4 components, one for each value of μ .

The zeroth component is

$$T^{0\nu}_{;\nu} = T^{0\nu}_{,\nu} = T^{00}_{,0} + T^{0i}_{,i}$$

$$= \frac{\partial \rho}{\partial t} + \frac{\partial (\rho v^i)}{\partial x^i}$$
(6.7)

which by comparison to Newtonian hydrodynamics implies that $T^{0\nu}_{;\nu}=0$ is the continuity equation. This equation represents the conservation of energy.

The ith component of the divergence is

$$T^{i\nu}_{,\nu} = T^{i0}_{,0} + T^{ij}_{,j}$$

$$= \frac{\partial(\rho v^i)}{\partial t} + \frac{\partial(\rho v^i v^j + p\delta^{ij})}{\partial x^j}$$

$$= \rho \frac{\partial v^i}{\partial t} + v^i \frac{\partial \rho}{\partial t} + v^i \frac{\partial \rho v^j}{\partial x^j} + \rho v^j \frac{\partial v^i}{\partial x^j} + \frac{\partial p}{\partial x^i}$$
(6.8)

now, according to the continuity equation

$$\frac{\partial(\rho v^{i})}{\partial x^{i}} = -\frac{\partial \rho}{\partial t}$$

$$\Rightarrow T^{i\nu}_{,\nu} = \rho \frac{\partial v^{i}}{\partial t} + v^{i} \frac{\partial \rho}{\partial t} - v^{i} \frac{\partial \rho}{\partial t} + \rho v^{j} \frac{\partial v^{i}}{\partial x^{j}} + \frac{\partial p}{\partial x^{i}}$$

$$= \rho \frac{D v^{i}}{D t} + \frac{\partial p}{\partial x^{i}}$$

$$\therefore T^{i\nu}_{;\nu} = 0 \Rightarrow \rho \frac{D v^{i}}{D t} = -\frac{\partial p}{\partial x^{i}}$$
(6.9)

which is Euler's equation of motion. It expresses the conservation of momentum.

The equations $T^{\mu\nu}_{\;;\nu}=0$ are general expressions for energy and momentum conservation.

6.1.2 Perfect fluids

A perfect fluid is a fluid with no viscosity and is given by the energy-momentum tensor

$$T_{\mu\nu} = (\rho + \frac{p}{c^2})u_{\mu}u_{\nu} + pg_{\mu\nu}$$
 (6.10)

where ρ and p are the mass density and the stress, respectively, measured in the fluids rest frame, u_{μ} are the components of the 4-velocity of the fluid.

In a comoving orthonormal basis the components of the 4-velocity are $u^{\hat{\mu}} = (c, 0, 0, 0)$. Then the energy-momentum tensor is given by

$$T_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} \rho c^2 & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}$$
 (6.11)

where p > 0 is pressure and p < 0 is tension.

There are three different types of perfect fluids that are useful.

- 1. **dust** or non-relativistic gas is given by p = 0 and the energy-momentum tensor $T_{\mu\nu} = \rho u_{\mu}u_{\nu}$.
- 2. **radiation** or ultra-relativistic gas is given by a traceless energy-momentum tensor, i.e. $T^{\mu}_{\ \mu} = 0$. It follows that $p = \frac{1}{3}\rho c^2$.
- 3. **vacuum energy**: If we assume that no velocity can be measured relatively to vacuum, then all the components of the energy-momentum tensor must be Lorentz-invariant. It follows that $T_{\mu\nu} \propto g_{\mu\nu}$. If vacuum is defined as a perfect fluid we get $p = -\rho c^2$ so that $T_{\mu\nu} = pg_{\mu\nu} = -\rho c^2 g_{\mu\nu}$.