Lecture 27. 24. april 2018

7.3 Light cones in Schwarzschild spacetime

The Schwarzschild line-element (with ¢ = 1) is
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We will look at radially moving photons (ds® = dQ)> = 0). We then get
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with + for outward motion and — for inward motion. For inwardly moving
photons, integration yields
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We now introduce a new time coordinate ¢’ such that the equation of motion
for photons moving inwards takes the following form
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The coordinate t' is called an ingoing Eddington-Finkelstein coordinate. The
photons here always move with the local velocity of light, ¢. For photons moving
outwards we have

’]’+R,§111|L—1|:t+k (7.42)
Rs
Making use of t =t — RgIn \é—s — 1| we get

-‘1=+QR‘;1H\1$—’— 1=t +k
S

dr 2Rg d) r+ Rg dr

a S Wy M
T o Rear T s Redr (7.43)
o dr —r—Rs

At r+ Rg

Making use of ordinary Schwarzschild coordinates we would have gotten the
following coordinate velocities for inn- and outwardly moving photons:
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which shows us how light is decelerated in a gravitational field. Figure 7.1 shows
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how this is viewed by a non-moving observer located far away from the mass. In
Figure 7.2 we have instead used the alternative time coordinate t'. The special
theory of relativity is valid locally, and all material particles thus have to remain
inside the light cone.
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Figure 7.1: At a radius r = Rg the light cones collapse, and nothing can any
longer escape, when we use the Schwarzschild coordinate time.

Figure 7.2: Using the ingoing Eddingto n-Finkelstein time coordinate there is no
collapse of the light cone at » = . Instead we get a collapse at the singularity
at r = 0. The angle between the left part of the light cone and the t'-axis is
always 45 degrees. We also see that once the transmitter gets inside the horizon
at r = [g, no particles can escape.



7.4 Analytical extension of the Schwarzschild space-
time

The Schwarzschild coordinates are comoving with a static reference frame out-
side a spherical mass distribution. If the mass has collapsed to a black hole
there exist a horizon at the Schwarzschild radius. As we have seen in section
7.3 there do not exist static observers at finite radii inside the horizon. Hence,
the Schwarzschild coordinates are well defined only outside the horizon.

Also the rr-component of the metric tensor has a coordinate singularity at
the Schwarzschild radius. The curvature of spacetime is finite here.

Kruskal and Szekeres have introduced new coordinates that are well defined
inside as well as outside the Schwarzschild radius, and with the property that
the metric tensor is non-singular for all » > 0.

In order to arrive at these coordinates we start by considering a photon
moving radially inwards. From eq. (7.40) we then have
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where v is a constant along the world line of the photon. We introduce a new
radial coordinate
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Then the equation of the worldline of the photon takes the form
t+r"=v (7.47)

The value of the constant v does only depend upon the point of time when the
photon was emitted. We may therefore use v as a new time coordinate.
For an outgoing photon we get in the same way

t—r*=u (7.48)

where u is a constant of integration, which may be used as a new time coordinate
for outgoing photons. The coordinates u and v are the generalization of the light

cone coordinates of Minkowski spacetime to the Schwarzchild spacetime.
From eqgs. (7.47) and (7.48) we get

dt = %(da' + du) (7.49)
dr* = %(dl‘ — du) (7.50)

and from eq. (7.46)

dr = (1 - R“) dr* (7.51)
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Inserting these differentials into eq. (7.38) we arrive at a new form of the
Schwarzschild line-element,
-
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The metric is still not well behaved at the horizon. Introducing the coordinates
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The line-element (7.52) then takes the form
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This is the first form of the Kruskal-Szekeres line-clement. Here is no coordinate
singularity, only a physical singularity at » = 0.
We may furthermore introduce two new coordinates
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Hence
V=T+27 (7.60)
U=T-7 (7.61)
giving
dUdV = dT? — dZ? (7.62)

Inserting this into eq. (7.57) we arrive at the second form of the Kruskal-Szekeres
line-element
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The inverse transformations of eqs. (7.58) and (7.59) is
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tanh 2;’ = % (7.65)

Note from eq. (7.63) that with the Kruskal-Szekeres coordinates T" and Z
the equation of the radial null geodesics has the same form as in flat spacetime

Z = =T + constant (7.66)



7.5 Embedding of the Schwarzschild metric

We will now look at a static, spherically symmetric space. A curved simultaneity
plane (dt = 0) through the equatorial plane (dff = 0) has the line element

ds® = g, dr® + r2d¢? (7.67)

with a radial coordinate such that a circle with radius r has a circumference of
length 277

We now embed this surface in a flat 3-dimensional space with cylinder co-
ordinates (z,r, ¢) and line element

ds® = dz% + di? + r2d¢? (7.68)

The surface described by the line element in (7.67) has the equation z = z(r).
The line element in (7.68) is therefore written as
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Demanding that (7.69) is in agreement with (7.67) we get
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Choosing the positive solution gives
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In the Schwarzschild spacetime we have
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Making use of this we find z:
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This is shown in Figure 10.6 including negative values of z.



Figure 10.6: The embedding of a space-like hypersurface of the Schwarzschild
spacetime. Depicted is Flamm’s parabola which is two such hypersurfaces glued
together along the horizon.



7.7 Particle trajectories in Schwarzschild 3-space
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where F is the particle’s energy as measured by an observer "far away" (r > I?,).
Also ¢ is a cyclic coordinate so that
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where p is the particle’s orbital angular momentum.

Making use of the 4-velocity identity U? = ¢ WX X" = —1 we transform
the above to get
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Now, refering back to the Lagrange equation
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we get, for 6
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Multiplying this by 260 we get
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which, on integration, gives
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where £ is the constant of integration.

Because of the spherical geometry we are free to choose a coordinate system
such that the particle moves in the equatorial plane and along the equator at a
given time ¢ = 0. That is # = § and 6 = 0 at time ¢ = 0. This determines the
constant of integration and £ = pg) such that
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The RHS is negative for all 8 # . It follows that the particle cannot deviate
from its original (equatorial) trajectory. Also, since this particular choice of
trajectory was arbitrary we can conclude, quite generally, that any motion of
free particles in a spherically symmetric gravitational field is planar motion.

7.7.1 Motion in the equatorial plane
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that is
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This corresponds to an energy equation with an effective potential V' (r) given

by
720N RQ pg’
Va(r) = (1 . 1+ 2

T-,2 + 1/72(?,) — EQ

§ o 2 Rt (7.89)
TN T T e T e
2



Newtonian potential Vv is defined by using the last expression in
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The possible trajectories of particles in the Schwarzschild 3-space are shown

schematically in Figure 7.5 as functions of position and energy of the particle
in the Newtonian limit.

Vw=V-1=Vy=—

To take into account the relativistic effects the above picture must be mod-
ified. We introduce dimensionless variables

P
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The potential V() now take the form
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For r equal to the Schwarzschild radius (X

= 2) we have
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For k*> <12 particles will fall in towards r=0. The relativistic an Newtonian graphs are shown
in Figure 10.3.
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Figure 10.3: The graphs of the two potentials V() and Vx (7). Notice how the
Newtonian potential has a centrifugal barrier for small r.
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