Lecture 34. 28. May 2018

10.3.2 Cosmological redshift of light

At. : the time interval in transmitter-position at transmission-time
Atp : the time interval in rec)eiver-position at receiving-time

Light follows curves with ds? = 0, with df = d¢ = 0 we have :

dt = —a(t)dy (10.16)
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Integration from transmitter-event to receiver-event :
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Under the integration from ¢, to t. + At. the expansion factor a(t) can be
considered a constant with value a(f.) and under the integration from tg to

to + Aty with value a(ty), giving:
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Aty and At, are intervals of the light at the receiving and transmitting time.

Since the wavelength of the light is A = cAt we have:
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This can be interpreted as a “stretching” of the electromagnetic waves due to
the expansion of space. The cosmological redshift is denoted by z and is given

by:
- AD — Ae - a(to)
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Using ag = a(ty) we can write this as:
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10.3.4 Isotropic and homogeneous universe models

We will discuss isotropic and homogenous universe models with perfect fluid
and a non-vanishing cosmological constant A. Calculating the components of
the Einstein tensor from the line-ement (10.14) we find in an orthonormal basis
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The components of the energy-momentum tensor of a perfect fluid in a comoving
orthonormal basis are

I}r =P E?nh =P (1033)
Hence the t# component of Einstein’s field equations is
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where p is the energy density and p is the pressure. The equations with vanishing
cosmological constant are called the Friedmann equations. Inserting eq. (10.34)

into eq. (10.35) gives:
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a=— a(p + 3p) (10.36)
If we interpret p as the mass density and use the speed of light ¢, we get
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a=— 3 alp +3p/c?) (10.37)

Inserting the gravitational mass density pq from eq.(9.21) this equation takes
the form A
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Let us consider some simple universe models.

1. Empty, flat universe model with vanishing cosmological constant: p=p=k=A=0.
Then eq.(10.34) gives a=0. Integrating with the normalization a(t,)=1 gives
a(t)=1.The line-element then takes the form

ds’ = —c’dt’ +dr’ +r’d®’
This represents the Minkowski spacetime in spherical coordinates.

2. Empty universe model with vanishing cosmological constant: p=p=A=0, k#0.
Then eq.(10.34) gives &> +k =0. This requires k=—1. For an expanding universe
model we then get a=1. Integrating with the normalization a(t,)=1 gives

a(t)=t/t,. The line-element then takes the form
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The universe model represented by this line-element is called the Milne universe
model.
Applying the coordinate transformation
AT -
transforms the line-element to the form
ds’> =—c*dT* +dR*> +R*dOY?,
which represents the Minkowski spacetime. When there exists a coordinate
transformation between two line-elements they represent the same spacetime in two
coordinate systems, which may be comoving with different reference frames. The
coordinate R is comoving with a static reference frame, SR. The coordinate r is
comoving with another reference frame, RF. We can find the motion of the reference
particles of RF relative to those of SR as follows.
Solving the last of the two transformation equations with respect to R gives
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The reference particles of RF have r = constant. Hence for these particles R increases

R=

linearly with T. This means that the frame in which r is comoving, is expanding with a
constant expansion velocity. Hence the Milne universe is nothing but the Minkowski
spacetime as described from an expanding reference frame.
Expanding, flat, empty (?) universe model with positive cosmological constant:
p=p=k=0, A>0. For this universe model eq.(10.34) reduces to
p=9= A
a 3
Hence the Hubble parameter is constant. Integration with a(t,)=1 gives
a(t) =gt
The line-element takes the form
ds® = —c* dt? + et (dr2 +r? dQZ) )
The spacetime represented by this line-element is called the De Sitter spacetime.
It was represented by De Sitter in 1917 as a static and spherically symmetric solution
of Einsteins’s equations with a cosmological constant for empty space. Five years
later is was shown that the reference particles of the static frame were not freely
moving, and that when transforming the solution to a coordinate system comoving
with freely moving reference particles, one obtained the line-element above. Also
Lemaitre showed in 1933 that the cosmological constant could be interpreted to
represent the constant energy density of Lorentz Invariant Vacuum Energy, LIVE.



In a universe dominated by a Lorentz-invariant vacuum the acceleration of the

cosmic expansion is
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i.e. accelerated expansion. This means that vacuum acts upon itself with repul-
sive gravitation.
The field equations can be combined into
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where p,,, is the density of matter, A = 87 py where py is the vacuum energy
with constant density. p = p,, + pa is the total mass density. Then we may
write o "

e, X (10.42)
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The critical density p.- is the density in a universe with euclidean spacelike
geometry, k = 0, which gives
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We introduce the relative densities
Qm - @ QA — p—\ (1044)
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Furthermore we introduce a dimensionless parameter that describes the curva-
ture of 3-space
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Eq. (10.42) can now be written
Qp + 00 + Q=1 (10.46)



