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Example 2.2.5 (Non-diagonal basis-vectors)
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Definition 2.2.4 (Contravariant components)
The contravariant components g"® of the metric tensor are defined as:

g, =0, g =uwt - a”, (2.71)
where W is defined by
ot e, =0 (2.72)
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g"" is the inverse matrix of g .
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Figure 2.9: The covariant- and contravariant components of a vector

It is possible to define a mapping between tensors of different type (eg.
covariant on contravariant) using the metric tensor.
We can for instance map a vector on a 1-form:

v = g(U, €u) = g(v%€a, 6u) = v"g(Ca, €u) = "9 oy (2.73)
This is known as lowering of an index. Raising of an index becomes :
vt = gH%vq (2.74)
The mixed components of the metric tensor becomes:
9" =9""G 0 =9, (2.75)

We now define distance along a curve. Let the curve be parameterized by A
(proper-time 7 for time-like curves). Let ¢ be the tangent vector-field of the
curve.

The squared distance ds? between the points along the curve is defined as:

ds® = g(0,0)d)\? (2.76)
gives
ds® = g, v"0”dA%. (2.77)
The tangent vector has components v# = %, which gives:
ds® = g ot dz” (2.78)

The expression ds? is known as the line-element.

Example 2.2.6 (Cartesian coordinates in a plane)

Gaz = 9yy = 1, 9y =9% =0

2.79
ds? = dz? + dy? ( )
Example 2.2.7 (Plane polar coordinates)
=1. =r?
9rr BT (280)

ds® = dr? + 12de?



Cartesian coordinates in the (flat) Minkowski space-time :
ds® = —2dt® + dx? + dy?® + d2? (2.81)

In an arbitrary curved space, an orthonormal basis can be adopted in any
point. If €; is tangent vector to the world line of an observer, then €; = @
where w is the 4-velocity of the observer. In this case, we are using what we call
the comoving orthonormal basis of the observer. In a such basis, we have the
Minkowski-metric:

ds? = ngpdatda” (2.82)

The causal structure of spacetime

The causal structure of spacetime can be illustrated by considering the light cone.

AAST LIGHT CONS

The world lines of material particles or an observer, moving slower than light, are inside
the light cone. Such curves are called time-like. The invariant parameter of a time-like curve
is usually chosen to be the proper time 7 of an observer following the curve. Then a tangent
vector of the curve is the 4-velocity of the observer.

A point in spacetime represents an event. The distance in spacetime between two
infinitesimally nearby points in spacetime is called an interval. A time-like interval is the
interval between two pints on a time-like curve. It has ds’_ <O0.

time



We shall now give a general physical interpretation of the line element for time-like
intervals. For this purpose it is sufficient to consider the Minkowski line-element which can

e 28] )3

Consider a particle moving with a coordinate velocity

be written

Loy, dx . dy . dz
v=v'e +v'e +v'e,=—e, +—e, +—¢,
dt dt dt

Then

ds’=—|1- (VX)Z +(VV )2 +(Vz )2 cdt’ = —[1—éjc2 dt’
c

From the special theory of relativity we know that the time measured by a standard clock
following the particle, i.e. the proper time of the particle, is

2
dr=4’1—v—2dt.
Cc

Hence we obtain the general physical interpretation of the line-element for a time-like

interval
ds® =—c’dr’.

This means that a time-like interval in space-time is measured by a clock, it is essentially a

time interval.

We shall later define geodesic curves as the straightest possible curves between two
events in spacetime. In flat Minkowski spacetime they are straight. We shall later show that
geodesic curves have extremal length between two events.

Let us consider a time-like interval between two events O and P as shown on the Figure.
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Figure 4.5: Timelike curves in spacetime.

(We shall not use capital letters for the coordinates in the text.)

We chose a coordinates commoving with a reference where an observer following a
geodesic curve is at rest. The world line of the observer is the straight line from O to P. A
particle also passing through the events O and P have accelerated motion and follows the
curved world line on the figure. The particle has a non-vanishing velocity. Then we have for
the proper time intervals measured by clocks following the observer and the particle, i. e.
following the geodetic curve between the events and a non-geodesic curve,

2
2 “ V2
2 _ 2
TOPgeodetic - (tP - tO) > I 1- ?dt - TOPnon—geodetic .
to

The interval between two events is path-dependent. The interval between to events has a
maximal magnitude along the geodesic curve between the events.

For light the velocity is v=c. Then the proper time vanishes. The world line of light moving
freely is called light-like, and an interval along the world line of light is called light-like. Hence
the interval along a light-like curve vanishes, ds;, =0. It is therefore also called a zero-

interval.

A spacelike curve represents the world line of a particle moving faster than light. The
interval between two events on such a curve is called a space-like interval and has ds’>__>0.
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