Lecture 9 12.02.18

3.1.1 Space geometry

Let € be the 4-velocity field (20 = ct.c = 1. 29 = t) of the reference particles in
a reference frame R. A set of simultanous events in R, defines a 3 dimensional
space called "3-space’ in R. This space is orthogonal to ¢;. We are going to
find the metric tensor ;; in this space, expressed by the metric tensor g,, of

spacetime.

In an arbitrary coordinate basis {€,,}, {€;} is not necessarily orthogonal to
€o. We choose €y||€;. Let €,; be the component of € orthogonal to €, that
is:€; - g = 0. The metric tensor of space is defined by:

(Note:gi; = gji = 7ij =

Yij = €1 €15,7%0 = 0,700 =0

The line element in space:
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gives the geometry of a “simultaneity space” in a reference frame where the
metric tensor of spacetime in a comoving coordinate system is g, .
The line element for spacetime can be expressed as:

ds* = —di* + dI® (3.3)

It follows that dt = O represents the simultaneity defining the 3-space with
metric ;.

dt? = dI? — ds*® = (Y — guw)datda”

— (ﬁ;‘"ij - gij)d;rid;l’.‘j + 2("{@0 — gio)dl‘idi’o + (’}'00 — ggo)d;l’odfto

= (9ij — % — g.ij)d,rid:rj — 2gioda’dr® — goo(da®)?
= —4900 l(d:rﬂ)g + 2@&"1’0({1‘.1 + gioggﬂld:ridrj}
900 950
2
= [(—gog)l/g (dx-o + gﬂd;ﬁ)]
900
So finally we get
df = (—goo)'/?(da” + % 1) (3.4)

The 3-space orthogonal to the world lines of the reference particles in R, dt = 0,
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corresponds to a coordinate time interval df = ” This is not an exact
differential , that is , the line integral of dt around a closed curve is in general
not equal to 0. Hence you can not in general define simultaneity (given by
dt = 0) around closed curves. Tt can, however, be done if the spacetime metric
is diagonal, g;o = 0. The condition df = 0 means simultaneity on Einstein
synchronized clocks . Conclusion:It is in general (g,0 # 0) not possible to

Einstein synchronize clocks around closed curves.



Rotating reference frame

Let F be an

inertial frame with cylinder coordinates (T, R, ©, Z). The line element is then

given by

ds?> = —dT? + dR? + R?d0? + dZ? (c=1)

(3.9)

In a rotating reference frame, RF, we have cylinder coordinates (t, r, #, z). We

then have the following coordinate transformation :
t=T, r=R, 0=0-WI. z=UI
The line element in the co-moving coordinate system in RF is then

ds? = —dt® + dr?® 4+ r?(df + wdt)? + dz?
= —(1 — 2 dt? + dr? + r2d8* + d2% + 27%wdhdt (¢ =1)

The metric tensor have the following components:
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dt = 0 gives

ds? = dr? + r2do? + d:?
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This represents the Euclidean geometry of the 3-space (simultaneity space, t =

T) in IF.

The spatial geometry in the rotating system is given by the spatial line

element:
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Inserting this into the expression above for the spatial line element we have



dP =drt +—' 46 +dz?.

So we have a non Euclidean spatial geometry in RF. The circumference of a
circle with radius r is
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We see that the quotient between circumference and radius > 27 which means
that the spatial geometry is hyperbolic. (For spherical geometry we have 1y <
27r.)

We shall now try to explain this result first from the point of view of observers at rest in the non-
rotating frame F, and then from the point of view of observes co-moving with the ‘rotating’ frame, R.

We shall first define the concept standard measuring rod. A standard measuring rod has by
definition a constant rest length even if it is accelerated. It is not allowed by a standard measuring
rod to be compressed or strained. Hence a standard measuring rod will have a Lorentz contraction
according to its velocity.

As observed from F the measuring rods along a circle about the origin have a velocity v=ro.

Hence they will be Lorentz contracted by the factor «fl—rza)z /¢’ . Hence there is place for more
standard measuring rods around the circle the faster the frame R rotates. Therefore the measured
length of the circle will be larger by this factor. This is the reason for the result (3.15) from the point
of view of an F-observer. Hence according to the F-observers there is no question of a non-Euclidean
geometry. The result (3.15) is explained by the Lorentz contraction of the standard measuring rods.

It may further be noted that since the material of a rotating disc cannot Lorentz contract an
engraved scale on the disc cannot be used as a set of standard measuring rods. When the disc is put
into rotation the material tries to Lorentz contract in the tangential direction, but is not allowed to
do so. Hence a tangential strain will develop in the material of a disc that is put into rotation.

We shall now assume the validity of the principle of relativity for rotating motion. Then the
observers in R can think of themselves as at rest and the environment as rotating. From this point of
view the standard measuring rods are not Lorentz contracted. Hence the explanation of the F-
observers does not work for the R-observers.

According to Einstein’s interpretation of the general theory of relativity the explanation of the R-
observes is as follows. The R-observer experiences what in Newton’s theory is called a centrifugal
force field. According the principle of equivalence this is reckoned as a gravitational field in the
theory of relativity. The R-observer will say that there is a non-Euclidean spatial geometry in the R-
frame, and that this is connected with the gravitational field which is present in this frame.

However, the experience of a gravitational acceleration field locally (the Newtonian centrifugal
field) is due to the fact that the R-observers are at rest in a reference frame in which the reference
particles are not freely falling.



It should be noted that in general an experimental result — in the present case that the measured
length of a rotating disc with radius ris larger than 2zr — is independent of the reference frame that
the experiment is described from, but the explanation of the result depends upon the motion of the
observer’s reference frame.



