Differential forms

40.1.1. Definition. The EXTERIOR DIFFERENTIATION OPERATOR d is a mapping which takes
k-forms to (k + 1)-forms. That is d: G¥ —=G**!. It has the following properties:

(i) If f is a O-form on R, then d(f) is just the differential (or total derivative) df of f. That
is,
d(f) = df = feda + fydy + f- dz
(ii) d is linear (that is, if w and p are k-forms and ¢ is a constant, then d(w + p) = dw + du
and d(cw) = cdw);
(iii) d? = 0 (that is, d(dw) = O for every k-form w);
(iv) If w is a k-form and p is any differential form

d(w A p) = (dw) A p+ (=1)%w A dp.
Example: If w = zy?sin z, then
dw = y?sin z dz + 2zysin 2 dy + ry® cos z dz [by (i)]
Example: If w = z%¢*, then
dw = 2z€* dr + 2% dz [by (i)]
Example: If w = xy?23dy, then
dw = d(zy?2%) A dy + xy*23 d(dy) [by (iv)]
=d(xy®2*) Ady  [by (iii)]
= (y*2 dx + 2zy2 dy + 3z dz) N dy [by ()]
=y?2% dz A dy + 2xy2* dy A dy + 3zy*22 dz N dy
= y?23 dx A dy — 3zy?2? dy A dz

Example: If w = zydz + z2yz dy + 2° dz, then
dw = d(zy dz) + d(z*yz dy) + d(2* dz) [by (ii)]

= d(zy) A dz + zy d(dz) + d(z%yz) A dy + 2yz d(dy)
+d(23) Adz + 22 d(dz) [by (iv)]

= d(zy) A dz + d(z’y2) Ady + d(z*) Adz  [by (iii)]

= (ydz + zdy) A dx + (2zyz dz + 2° 2 dy + 2%y dz) A dy
+(322dz) Adz  [by (i)]

=xdy Adz + 2zxyzdz Ady + 2°ydz A dy

=x(2yz — 1) dz A dy — 2>y dy A dz.

Remark: It simplifies computations to notice that d(dz A dy) = d(dz) A dy — dz A d(dy) =
OANdy—dxANO=0.

Example: If w = 22?2 dx A dy + ryzdz A dz, then
dw = d(zz* dx A dy) + d(zyzdz Adz)  [by (ii)]
=d(z2?) A (dz A dy) + 2% d(dx A dy) + d(zyz) A (dz A dx)
+ zyzd(dz A dz) [by (iv)]
= d(zz%) A (dz A dy)
+ d(zyz) A (dz A dx) [by the Remark above]
= (22dz + 2zzdz) Adx A dy
+ (yzdr + xzdy + zydz) Adz A dzx [by (1)]
=2zrzdz Ndx Ndy + zzdy Adz A\ dx
= 2zxzdr ANdz ANdy — zzdy Ndx A dz
=2zzdr ANdy ANdz + zzdx ANdy Ndz
=3zzdr Ndy Ndz
Example: If w = 23?23 dz A dy A dz, then dw = 0. [Proof: The differentiation operator takes

3-forms to 4-forms and (in this course) all 4-forms are zero. Or, you can give essentially the same
argument as in the Remark above.|



40.2. Exercises
(1) Let f(z,y,2) = 2 +y*> + 2zsinz. Then
df = dr + dy +

(2) If w = z3y%2° dy, then
dw = dy A dz + dz Ndx +

(3) Let w = cos(zy?) dx A dz. Then (in simplified form)
dw =

dz .

dr A dy.

(4) If w = zy?2® dx + sin(zy) dy + €¥* dz, then
dw = dy A dz + dz Ndr +

dr A dy.

(5) Let w = 2%y dy — xy?>dr. Then (in simplified form)
dw =

(6) Let w =xzdy Adz +ydz A dxr + zdx A dy. Then (in simplified form)

dw =

(7) Let f be a O-form. Then (in simplified form)

d(fdr) = dy Ndz + dz Ndr + dxr A dy.

(8) Let w = 3xzdr + ry’ dy and p = r’ydr — 6rydz. Then (in simplified form)

d(w A p) =

(9) Let w =yzdr + xzdy + rydz. Then

dw = dy Adz + dz Adz + dz A dy.

(10) Let w = 2z%* dx + y®sin zdy + (22 + y) dz. Then

dw = d-yAdz+ dz ANdx +

(11) Let w = xdxr + zydy + ryzdz. Then
dw = dy A dz + dz Ndr +

40.4. Answers to Odd-Numbered Exercises

(1) 322 4 2sinz, 2y, 2xcosz
(3) 2xysin(xy?)dr A dy A dz
(5) 4drydzx Ndy

(7) 0, f3, — f2

(9) 0,0,0

)
)
)
)
)
(11) zz, —yz, y

dr A dy.

dr A dy.



Homework 3

i 8

Prove that the 1-form z dy — y dz is invariant under all rotations of R>
around (0,0).

. Prove the same for = dzr + ydy.

Introduce “hyperbolic coordinates” (x,v¢’): x = ycoshv), y = xsinh .
In which domain U C R? are they defined?

. Calculate the area 2-form dz A dy of R? in the polar coordinates (p, ):

dr ANdy=CdpAdp,C="1.

. Calculate the area 2-form dx A dy in the complex coordinates z, Z,

drANdy=CdzNdz,C=1.

. Calculate the volume 3-form of R? in the spherical coordinates (r, p, 8),

z=rcosb,
x = rsinf cos p,
y = rsinfsin g,

de ANdyANdz = (?)dr NdO A dp.

the volume 3-form

Homework 3 — Solutions

1
2:

xdy — ydr = dp - p* — invariant under rotation.

rdr + ydy = pdp — invariant under rotation: p — p, ¢ — @ + const,
dp — dp, dp — dep.

= xcosh®), y = ysinhy), 22 — > = x? >0

3. de Ady = pdp Ndp.

4.

dz =dx+id
dondy - EAE { 2 +idy,

—2i dz = dx — idy.

5. R de AdyAdz =r?sinfdr AdfAdep.

For the unit sphere S? (r = 1) we have Area = sinfdfAdp, 0 < 8 < .



Example 1.1. Express the 2-form dx A dy in polar coordinates.

Solution: From dx = cos@dr —rsinfdf and dy = sinfdr + rcosfdf, we have

dx Ady = cos@.rcos@ dr Ndf — rsinf. sin@ df A dr
= rcos’ Odr A df + rsin 0dr A 0 = rdr A df,

by noticing that dr A dr = 0 and df A df = 0.

[Aside: we may also apply the identities rdr = zdz + ydy and df = (zdy — ydz)/(z* +
y*) to obtain
xdy — ydr r?dx A dy — yPdy A dz

dr A df = (zd d = =dx A dy.
rdr A (zdx + ydy) A o e r A dy

Example 1.3. Consider a mapping f from R? to R? sending (z,y) to (u,v), where

u =% —y? and v = 2zy. Express du A dv in terms of dx A dy.
Solution: We have du = 2zdx — 2ydy and dv = 2zdy + 2ydz. Hence

du A dv = (2zdz—2ydy) A (2zdy + 2ydzx)
= 4x%dx A dy — 4y*dy A dx = A(2? + y*) dz A dy.

Example 1.4. Recall our favorite example: w = , the angular form. Find

its exterior derivative dw.

Solution: Rewrite the identity w = (zdy —ydzx)/(z* + y?) as (2% + y*)w = zdy — yd=.
Take exterior derivatives of both sides. Using the product rule, the left hand side gives

d((2* + y*)w) = d(2® + ¥°) Aw + (2* + y*)dw
= 2(xdzx + ydy) A (zdy — ydz)/(x® + y*) + (2% + y°)dw.

Here the expression (xdx + ydy) A (xdy — ydz) can be expanded as
2 2 2 2 2, .2
zidr ANdy — y“dy Ndx = x°dx Ady + y“dx Ndy = (z° + y" )dz A dy

(we have seen this in Example 1.2) and hence d((z? + y?)w) = 2dz A dy + (z? + y*)dw.
On the other hand, d(zdy — ydxr) = dx A dy — dy A dr = 2dz N dy. Thus we have
2dzr A dy + (2° + y?)dw = 2dx A dy. Cancelling 2dx A dy, we get (22 + y?)dw = 0.



Example 1.5. The general 1-form in three variables =, y and z can be written as
a = Pdr + Qdy + Rdz, with P, @, R functions of z, y, z. Find its exterior derivative da.

Solution: Using the identities dP = P,dz + P,dy + P.dz (recall that P, stands for
OP/0x), dQ = Q.dzx + Qudy + Q.dz and dR = R,dxr + Rydy + R.dz, we compute:

da =dP Ndx +dQ Ndy + dR A dz
= (Prdz+ Pydy+ P.dz) Ndx+(Q.dz+Qydy+Q.dz) Ady+ (R dx+ R,dy+ R.dz) \dz
= Pydy Adx + P.dz Adx + Qpdr Ndy + Q.dz ANdy + R.dx ANdz + R,dy N dz
=(Ry—Q.)dyNdz+ (P, — R;)dz Ndx + (Q, — P,) dx A dy.

The reader should notice the connection between the exterior derivative dea and the curl
of a vector field F = Pi+ @Qj + Rk in classical vector analysis, which is defined by the
identity

crl F=VxF=(R,-Q.. P.- R, Q. - P,).

Also, notice the connection between df = f.dx + f,dy+ f.dz (here f is a function of three
variables x, ¥ and z) and the gradient of f defined by

grad f=Vf = fii+ f,j+ f.k.

Example 10: Let w = (x + x3)dz; A dzy. Then

dw = d(zy+ z3) Adx) Adzy

dry Adxy A dzy + 2x3dxs A dxy A dxs
2x3 dxz A dxy A dzsy

= —2x3dxry Adxs A dzs

= 2;1,'3 d;l'l A d;l'g A d.'l'3

Notice the term with two dz,’s is zero, and in the last two steps I just put dw in
“standard” form.



Problem 2.27 Consider on R?:

()L () -2
X=(+y)gr +07+)5  Y=0-Dg

6 = (2xy +x?+ l)dx+(x2—y)dy,

Compute:

(1) [X, Y]0.0)-
(i1) @(X)(0,0).

Solution
(1)
(X, Y]1=(y" —2xy +2x + l),i, so [X,Y]o.0 = i .
ox ax | (0,0)
(i1)

6(X)(0,0) = ((2xy +x2 + 1)()(2 +y) + (xz — y)(y2 +1))(0,0) =0.



