Differential forms

40.1.1. Definition. The EXTERIOR DIFFERENTIATION OPERATOR d is a mapping which takes k-forms to (k+1)-forms. That is $d: G^k \longrightarrow G^{k+1}$. It has the following properties:

(i) If f is a 0-form on R³, then d(f) is just the differential (or total derivative) df of f. That is,

$$d(f) = df = f_x dx + f_y dy + f_z dz;$$

- (ii) d is linear (that is, if ω and μ are k-forms and c is a constant, then d(ω + μ) = dω + dμ and d(cω) = c dω);
- (iii) $d^2 = \mathbf{0}$ (that is, $d(d\omega) = \mathbf{0}$ for every k-form ω);
- (iv) If ω is a k-form and μ is any differential form

$$d(\omega \wedge \mu) = (d\omega) \wedge \mu + (-1)^k \omega \wedge d\mu.$$

Example: If $\omega = xy^2 \sin z$, then

$$d\omega = y^2 \sin z \, dx + 2xy \sin z \, dy + xy^2 \cos z \, dz \qquad \text{[by (i)]}$$

Example: If $\omega = x^2 e^z$, then

$$d\omega = 2xe^z dx + x^2 e^z dz \qquad \text{[by (i)]}$$

Example: If $\omega = xy^2z^3 dy$, then

$$\begin{split} d\omega &= d(xy^2z^3) \wedge dy + xy^2z^3 \, d(dy) \qquad \text{[by (iv)]} \\ &= d(xy^2z^3) \wedge dy \qquad \text{[by (iii)]} \\ &= (y^2z^3 \, dx + 2xyz^3 \, dy + 3xy^2z^2 \, dz) \wedge dy \qquad \text{[by (i)]} \\ &= y^2z^3 \, dx \wedge dy + 2xyz^3 \, dy \wedge dy + 3xy^2z^2 \, dz \wedge dy \\ &= y^2z^3 \, dx \wedge dy - 3xy^2z^2 \, dy \wedge dz \end{split}$$

Example: If $\omega = xy dx + x^2yz dy + z^3 dz$, then

$$\begin{split} d\omega &= d(xy\,dx) + d(x^2yz\,dy) + d(z^3\,dz) & \text{[by (ii)]} \\ &= d(xy) \wedge dx + xy\,d(dx) + d(x^2yz) \wedge dy + x^2yz\,d(dy) \\ &\quad + d(z^3) \wedge dz + z^3\,d(dz) & \text{[by (iv)]} \\ &= d(xy) \wedge dx + d(x^2yz) \wedge dy + d(z^3) \wedge dz & \text{[by (iii)]} \\ &= (y\,dx + x\,dy) \wedge dx + (2xyz\,dx + x^2z\,dy + x^2y\,dz) \wedge dy \\ &\quad + (3z^2\,dz) \wedge dz & \text{[by (i)]} \\ &= x\,dy \wedge dx + 2xyz\,dx \wedge dy + x^2y\,dz \wedge dy \\ &= x(2yz-1)\,dx \wedge dy - x^2y\,dy \wedge dz. \end{split}$$

Remark: It simplifies computations to notice that $d(dx \wedge dy) = d(dx) \wedge dy - dx \wedge d(dy) = \mathbf{0} \wedge dy - dx \wedge \mathbf{0} = \mathbf{0}$.

Example: If $\omega = xz^2 dx \wedge dy + xyz dz \wedge dx$, then

$$\begin{split} d\omega &= d(xz^2\,dx\wedge dy) + d(xyz\,dz\wedge dx) \qquad \text{[by (ii)]} \\ &= d(xz^2)\wedge (dx\wedge dy) + xz^2\,d(dx\wedge dy) + d(xyz)\wedge (dz\wedge dx) \\ &\quad + xyz\,d(dz\wedge dx) \qquad \text{[by (iv)]} \\ &= d(xz^2)\wedge (dx\wedge dy) \\ &\quad + d(xyz)\wedge (dz\wedge dx) \qquad \text{[by the Remark above]} \\ &= (z^2\,dx + 2xz\,dz)\wedge dx\wedge dy \\ &\quad + (yz\,dx + xz\,dy + xy\,dz)\wedge dz\wedge dx \qquad \text{[by (i)]} \\ &= 2xz\,dz\wedge dx\wedge dy + xz\,dy\wedge dz\wedge dx \\ &= -2xz\,dx\wedge dz\wedge dy - xz\,dy\wedge dx\wedge dz \\ &= 2xz\,dx\wedge dy\wedge dz + xz\,dx\wedge dy\wedge dz \\ &= 3xz\,dx\wedge dy\wedge dz \end{split}$$

Example: If $\omega = xy^2z^3 dx \wedge dy \wedge dz$, then $d\omega = \mathbf{0}$. [**Proof:** The differentiation operator takes 3-forms to 4-forms and (in this course) all 4-forms are zero. Or, you can give essentially the same argument as in the Remark above.]

40.2. Exercises

(1) Let
$$f(x, y, z) = x^3 + y^2 + 2x \sin z$$
. Then
$$df = \underline{\qquad} dx + \underline{\qquad} dy + \underline{\qquad} dz.$$

(2) If
$$\omega=x^3y^2z^5\,dy$$
, then
$$d\omega=\underline{\qquad}dy\wedge dz+\underline{\qquad}dz\wedge dx+\underline{\qquad}dx\wedge dy.$$

(3) Let
$$\omega = \cos(xy^2) dx \wedge dz$$
. Then (in simplified form)
$$d\omega = \underline{\hspace{1cm}}.$$

(4) If
$$\omega = xy^2z^3 dx + \sin(xy) dy + e^{yz} dz$$
, then
$$d\omega = \underline{\qquad} dy \wedge dz + \underline{\qquad} dz \wedge dx + \underline{\qquad} dx \wedge dy.$$

(5) Let
$$\omega = x^2 y \, dy - xy^2 \, dx$$
. Then (in simplified form)
$$d\omega = \underline{\hspace{1cm}}.$$

(6) Let
$$\omega = x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy$$
. Then (in simplified form)
$$d\omega = \underline{\hspace{1cm}}$$
 .

(7) Let
$$f$$
 be a 0-form. Then (in simplified form)
$$d(f dx) = \underline{\qquad} dy \wedge dz + \underline{\qquad} dz \wedge dx + \underline{\qquad} dx \wedge dy.$$

(8) Let
$$\omega = 3xz\,dx + xy^2\,dy$$
 and $\mu = x^2y\,dx - 6xy\,dz$. Then (in simplified form)
$$d(\omega \wedge \mu) = \underline{\hspace{1cm}}.$$

(9) Let
$$\omega = yz\,dx + xz\,dy + xy\,dz$$
. Then
$$d\omega = \underline{\qquad} dy \wedge dz + \underline{\qquad} dz \wedge dx + \underline{\qquad} dx \wedge dy.$$

(10) Let
$$\omega = 2x^5e^z dx + y^3 \sin z dy + (x^2 + y) dz$$
. Then
$$d\omega = \underline{\qquad} dy \wedge dz + \underline{\qquad} dz \wedge dx + \underline{\qquad} dx \wedge dy.$$

(11) Let
$$\omega = x \, dx + xy \, dy + xyz \, dz$$
. Then
$$d\omega = \underline{\qquad} dy \wedge dz + \underline{\qquad} dz \wedge dx + \underline{\qquad} dx \wedge dy.$$

40.4. Answers to Odd-Numbered Exercises

(1)
$$3x^2 + 2\sin z$$
, $2y$, $2x\cos z$

(3)
$$2xy\sin(xy^2)dx \wedge dy \wedge dz$$

(5)
$$4xy dx \wedge dy$$

$$(7) 0, f_3, -f_2$$

$$(11)$$
 $xz, -yz, y$

Homework 3

- 1. Prove that the 1-form x dy y dx is invariant under all rotations of \mathbb{R}^2 around (0,0).
- 2. Prove the same for x dx + y dy.
- 3. Introduce "hyperbolic coordinates" (χ, ψ) : $x = \chi \cosh \psi$, $y = \chi \sinh \psi$. In which domain $U \subset \mathbb{R}^2$ are they defined?
- 4. Calculate the area 2-form $dx \wedge dy$ of \mathbb{R}^2 in the polar coordinates (ρ, φ) : $dx \wedge dy = C d\rho \wedge d\varphi$, C = ?.
- 5. Calculate the area 2-form $dx \wedge dy$ in the complex coordinates z, \overline{z} , $dx \wedge dy = C dz \wedge d\overline{z}$, C = ?.
- 6. Calculate the volume 3-form of \mathbb{R}^3 in the spherical coordinates (r, φ, θ) ,

$$z = r \cos \theta,$$

$$x = r \sin \theta \cos \varphi,$$

$$y = r \sin \theta \sin \varphi,$$

$$dx \wedge dy \wedge dz = (?) dr \wedge d\theta \wedge d\varphi.$$
the volume 3-form

Homework 3 — Solutions

- 1. $x dy y dx = d\varphi \cdot \rho^2$ invariant under rotation.
- 2. $x dx + y dy = \rho d\rho$ invariant under rotation: $\rho \mapsto \rho$, $\varphi \mapsto \varphi + \text{const}$, $d\rho \mapsto d\rho$, $d\varphi \mapsto d\varphi$.

$$x = \chi \cosh \psi, \ y = \chi \sinh \psi, \ x^2 - y^2 = \chi^2 > 0$$

- 3. $dx \wedge dy = \rho d\rho \wedge d\varphi$.
- 4.

$$dx \wedge dy = \frac{dz \wedge d\overline{z}}{-2i}, \qquad \left\{ \begin{aligned} dz &= dx + i\,dy, \\ d\overline{z} &= dx - i\,dy. \end{aligned} \right.$$

5. \mathbb{R}^3 : $dx \wedge dy \wedge dz = r^2 \sin \theta \, dr \wedge d\theta \wedge d\varphi$.

For the unit sphere S^2 (r=1) we have Area $= \sin \theta \, d\theta \wedge d\varphi$, $0 \leq \theta \leq \pi$.

Example 1.1. Express the 2-form $dx \wedge dy$ in polar coordinates.

Solution: From $dx = \cos\theta \, dr - r \sin\theta \, d\theta$ and $dy = \sin\theta \, dr + r \cos\theta \, d\theta$, we have

$$dx \wedge dy = \cos \theta \cdot r \cos \theta \, dr \wedge d\theta - r \sin \theta \cdot \sin \theta \, d\theta \wedge dr$$
$$= r \cos^2 \theta dr \wedge d\theta + r \sin^2 \theta dr \wedge \theta = r dr \wedge d\theta,$$

by noticing that $dr \wedge dr = 0$ and $d\theta \wedge d\theta = 0$.

[Aside: we may also apply the identities rdr = xdx + ydy and $d\theta = (xdy - ydx)/(x^2 + y^2)$ to obtain

$$rdr \wedge d\theta = (xdx + ydy) \wedge \frac{xdy - ydx}{x^2 + y^2} = \frac{x^2dx \wedge dy - y^2dy \wedge dx}{x^2 + y^2} = dx \wedge dy.$$

Example 1.3. Consider a mapping f from \mathbf{R}^2 to \mathbf{R}^2 sending (x, y) to (u, v), where $u = x^2 - y^2$ and v = 2xy. Express $du \wedge dv$ in terms of $dx \wedge dy$.

Solution: We have du = 2xdx - 2ydy and dv = 2xdy + 2ydx. Hence

$$du \wedge dv = (2xdx - 2ydy) \wedge (2xdy + 2ydx)$$
$$= 4x^2 dx \wedge dy - 4y^2 dy \wedge dx = 4(x^2 + y^2) dx \wedge dy.$$

Example 1.4. Recall our favorite example: $\omega = \frac{xdy - ydx}{x^2 + y^2}$, the angular form. Find its exterior derivative $d\omega$.

Solution: Rewrite the identity $\omega = (xdy - ydx)/(x^2 + y^2)$ as $(x^2 + y^2)\omega = xdy - ydx$. Take exterior derivatives of both sides. Using the product rule, the left hand side gives

$$d((x^{2} + y^{2})\omega) = d(x^{2} + y^{2}) \wedge \omega + (x^{2} + y^{2})d\omega$$
$$= 2(xdx + ydy) \wedge (xdy - ydx)/(x^{2} + y^{2}) + (x^{2} + y^{2})d\omega.$$

Here the expression $(xdx + ydy) \wedge (xdy - ydx)$ can be expanded as

$$x^2dx \wedge dy - y^2dy \wedge dx = x^2dx \wedge dy + y^2dx \wedge dy = (x^2 + y^2)dx \wedge dy$$

(we have seen this in Example 1.2) and hence $d((x^2 + y^2)\omega) = 2dx \wedge dy + (x^2 + y^2)d\omega$. On the other hand, $d(xdy - ydx) = dx \wedge dy - dy \wedge dx = 2dx \wedge dy$. Thus we have $2dx \wedge dy + (x^2 + y^2)d\omega = 2dx \wedge dy$. Cancelling $2dx \wedge dy$, we get $(x^2 + y^2)d\omega = 0$.

Example 1.5. The general 1-form in three variables x, y and z can be written as $\alpha = Pdx + Qdy + Rdz$, with P, Q, R functions of x, y, z. Find its exterior derivative $d\alpha$.

Solution: Using the identities $dP = P_x dx + P_y dy + P_z dz$ (recall that P_x stands for $\partial P/\partial x$), $dQ = Q_x dx + Q_y dy + Q_z dz$ and $dR = R_x dx + R_y dy + R_z dz$, we compute:

$$\begin{split} d\alpha &= dP \wedge dx + dQ \wedge dy + dR \wedge dz \\ &= (P_x dx + P_y dy + P_z dz) \wedge dx + (Q_x dx + Q_y dy + Q_z dz) \wedge dy + (R_x dx + R_y dy + R_z dz) \wedge dz \\ &= P_y dy \wedge dx + P_z dz \wedge dx + Q_x dx \wedge dy + Q_z dz \wedge dy + R_x dx \wedge dz + R_y dy \wedge dz \\ &= (R_y - Q_z) dy \wedge dz + (P_z - R_x) dz \wedge dx + (Q_x - P_y) dx \wedge dy. \end{split}$$

The reader should notice the connection between the exterior derivative $d\alpha$ and the curl of a vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ in classical vector analysis, which is defined by the identity

curl
$$\mathbf{F} \equiv \nabla \times \mathbf{F} = (R_y - Q_z, P_z - R_x, Q_x - P_y).$$

Also, notice the connection between $df = f_x dx + f_y dy + f_z dz$ (here f is a function of three variables x, y and z) and the gradient of f defined by

grad
$$f \equiv \nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$
.

Example 10: Let $\omega = (x_1 + x_3^2)dx_1 \wedge dx_2$. Then

$$d\omega = d(x_1 + x_3^2) \wedge dx_1 \wedge dx_2$$
= $dx_1 \wedge dx_1 \wedge dx_2 + 2x_3 dx_3 \wedge dx_1 \wedge dx_2$
= $2x_3 dx_3 \wedge dx_1 \wedge dx_2$
= $-2x_3 dx_1 \wedge dx_3 \wedge dx_2$
= $2x_3 dx_1 \wedge dx_2 \wedge dx_3$

Notice the term with two dx_1 's is zero, and in the last two steps I just put $d\omega$ in "standard" form.

Problem 2.27 Consider on \mathbb{R}^2 :

$$X = (x^2 + y)\frac{\partial}{\partial x} + (y^2 + 1)\frac{\partial}{\partial y}, \qquad Y = (y - 1)\frac{\partial}{\partial x},$$

$$\theta = (2xy + x^2 + 1) dx + (x^2 - y) dy,$$

Compute:

- (i) $[X, Y]_{(0,0)}$.
- (ii) $\theta(X)(0,0)$.

Solution

(i)

$$[X, Y] = (y^2 - 2xy + 2x + 1)\frac{\partial}{\partial x}$$
, so $[X, Y]_{(0,0)} = \frac{\partial}{\partial x}\Big|_{(0,0)}$.

$$\theta(X)(0,0) = ((2xy + x^2 + 1)(x^2 + y) + (x^2 - y)(y^2 + 1))(0,0) = 0.$$