Differential forms

40.1.1. Definition. The exterior differentiation operator d is a mapping which takes k-forms to $(k+1)$-forms. That is $d: G^{k} \longrightarrow G^{k+1}$. It has the following properties:
(i) If f is a 0 -form on \mathbb{R}^{3}, then $d(f)$ is just the differential (or total derivative) $d f$ of f. That is,

$$
d(f)=d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

(ii) d is linear (that is, if ω and μ are k-forms and c is a constant, then $d(\omega+\mu)=d \omega+d \mu$ and $d(c \omega)=c d \omega)$;
(iii) $d^{2}=\mathbf{0}$ (that is, $d(d \omega)=\mathbf{0}$ for every k-form ω);
(iv) If ω is a k-form and μ is any differential form

$$
d(\omega \wedge \mu)=(d \omega) \wedge \mu+(-1)^{k} \omega \wedge d \mu .
$$

Example: If $\omega=x y^{2} \sin z$, then

$$
d \omega=y^{2} \sin z d x+2 x y \sin z d y+x y^{2} \cos z d z \quad[\text { by (i) }]
$$

Example: If $\omega=x^{2} e^{z}$, then

$$
d \omega=2 x e^{z} d x+x^{2} e^{z} d z \quad[\text { by (i) }]
$$

Example: If $\omega=x y^{2} z^{3} d y$, then

$$
\begin{aligned}
d \omega & =d\left(x y^{2} z^{3}\right) \wedge d y+x y^{2} z^{3} d(d y) \quad[\text { by (iv) }] \\
& =d\left(x y^{2} z^{3}\right) \wedge d y \quad[\text { by (iii)] } \\
& =\left(y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z\right) \wedge d y \quad[\text { by (i) }] \\
& =y^{2} z^{3} d x \wedge d y+2 x y z^{3} d y \wedge d y+3 x y^{2} z^{2} d z \wedge d y \\
& =y^{2} z^{3} d x \wedge d y-3 x y^{2} z^{2} d y \wedge d z
\end{aligned}
$$

Example: If $\omega=x y d x+x^{2} y z d y+z^{3} d z$, then

$$
\begin{aligned}
d \omega= & d(x y d x)+d\left(x^{2} y z d y\right)+d\left(z^{3} d z\right) \quad[\text { by (ii)] } \\
= & d(x y) \wedge d x+x y d(d x)+d\left(x^{2} y z\right) \wedge d y+x^{2} y z d(d y) \\
& \quad+d\left(z^{3}\right) \wedge d z+z^{3} d(d z) \quad[\text { by (iv)] } \\
= & d(x y) \wedge d x+d\left(x^{2} y z\right) \wedge d y+d\left(z^{3}\right) \wedge d z \quad[\text { by (iii)] } \\
= & (y d x+x d y) \wedge d x+\left(2 x y z d x+x^{2} z d y+x^{2} y d z\right) \wedge d y \\
& \quad+\left(3 z^{2} d z\right) \wedge d z \quad[\text { by (i)] } \\
= & x d y \wedge d x+2 x y z d x \wedge d y+x^{2} y d z \wedge d y \\
= & x(2 y z-1) d x \wedge d y-x^{2} y d y \wedge d z .
\end{aligned}
$$

Remark: It simplifies computations to notice that $d(d x \wedge d y)=d(d x) \wedge d y-d x \wedge d(d y)=$ $\mathbf{0} \wedge d y-d x \wedge \mathbf{0}=\mathbf{0}$.
Example: If $\omega=x z^{2} d x \wedge d y+x y z d z \wedge d x$, then

$$
\begin{aligned}
d \omega= & d\left(x z^{2} d x \wedge d y\right)+d(x y z d z \wedge d x) \quad[\text { by (ii) }] \\
= & d\left(x z^{2}\right) \wedge \\
& (d x \wedge d y)+x z^{2} d(d x \wedge d y)+d(x y z) \wedge(d z \wedge d x) \\
& +x y z d(d z \wedge d x) \quad[\text { by (iv) }] \\
= & d\left(x z^{2}\right) \wedge \\
& (d x \wedge d y) \\
& +d(x y z) \wedge(d z \wedge d x) \quad[\text { by the Remark above }] \\
= & \left(z^{2} d x+2 x z d z\right) \wedge d x \wedge d y \\
& +(y z d x+x z d y+x y d z) \wedge d z \wedge d x \quad[\text { by (i)] } \\
= & 2 x z d z \wedge d x \wedge d y+x z d y \wedge d z \wedge d x \\
= & -2 x z d x \wedge d z \wedge d y-x z d y \wedge d x \wedge d z \\
= & 2 x z d x \wedge d y \wedge d z+x z d x \wedge d y \wedge d z \\
= & 3 x z d x \wedge d y \wedge d z
\end{aligned}
$$

Example: If $\omega=x y^{2} z^{3} d x \wedge d y \wedge d z$, then $d \omega=\mathbf{0}$. [Proof: The differentiation operator takes 3 -forms to 4 -forms and (in this course) all 4 -forms are zero. Or, you can give essentially the same argument as in the Remark above.]

40.2. Exercises

(1) Let $f(x, y, z)=x^{3}+y^{2}+2 x \sin z$. Then

$$
d f=\underbrace{d x+}
$$

\qquad $d y+$ \qquad $d z$.
(2) If $\omega=x^{3} y^{2} z^{5} d y$, then $d \omega=$ \qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.
(3) Let $\omega=\cos \left(x y^{2}\right) d x \wedge d z$. Then (in simplified form)

$$
d \omega=
$$

\qquad .
(4) If $\omega=x y^{2} z^{3} d x+\sin (x y) d y+e^{y z} d z$, then $d \omega=$ \qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.
(5) Let $\omega=x^{2} y d y-x y^{2} d x$. Then (in simplified form)

$$
d \omega=
$$

\qquad .
(6) Let $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$. Then (in simplified form)

$$
d \omega=
$$

\qquad .
(7) Let f be a 0 -form. Then (in simplified form)

$$
d(f d x)=
$$

\qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.
(8) Let $\omega=3 x z d x+x y^{2} d y$ and $\mu=x^{2} y d x-6 x y d z$. Then (in simplified form)

$$
d(\omega \wedge \mu)=
$$

\qquad .
(9) Let $\omega=y z d x+x z d y+x y d z$. Then
$d \omega=$ \qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.
(10) Let $\omega=2 x^{5} e^{z} d x+y^{3} \sin z d y+\left(x^{2}+y\right) d z$. Then
$d \omega=$ \qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.
(11) Let $\omega=x d x+x y d y+x y z d z$. Then $d \omega=$ \qquad $d y \wedge d z+$ \qquad $d z \wedge d x+$ \qquad $d x \wedge d y$.

40.4. Answers to Odd-Numbered Exercises

(1) $3 x^{2}+2 \sin z, 2 y, 2 x \cos z$
(3) $2 x y \sin \left(x y^{2}\right) d x \wedge d y \wedge d z$
(5) $4 x y d x \wedge d y$
(7) $0, f_{3},-f_{2}$
(9) $0,0,0$
(11) $x z,-y z, y$

Homework 3

1. Prove that the 1 -form $x d y-y d x$ is invariant under all rotations of \mathbb{R}^{2} around $(0,0)$.
2. Prove the same for $x d x+y d y$.
3. Introduce "hyperbolic coordinates" $(\chi, \psi): x=\chi \cosh \psi, y=\chi \sinh \psi$. In which domain $U \subset \mathbb{R}^{2}$ are they defined?
4. Calculate the area 2-form $d x \wedge d y$ of \mathbb{R}^{2} in the polar coordinates (ρ, φ) : $d x \wedge d y=C d \rho \wedge d \varphi, C=?$.
5. Calculate the area 2-form $d x \wedge d y$ in the complex coordinates z, \bar{z}, $d x \wedge d y=C d z \wedge d \bar{z}, C=?$.
6. Calculate the volume 3 -form of \mathbb{R}^{3} in the spherical coordinates (r, φ, θ),

$$
\begin{aligned}
& z=r \cos \theta, \\
& x=r \sin \theta \cos \varphi, \\
& y=r \sin \theta \sin \varphi,
\end{aligned}
$$

$d x \wedge d y \wedge d z=(?) d r \wedge d \theta \wedge d \varphi$.
the volume 3 -form

Homework 3 - Solutions

1. $x d y-y d x=d \varphi \cdot \rho^{2}$ - invariant under rotation.
2. $x d x+y d y=\rho d \rho$ - invariant under rotation: $\rho \mapsto \rho, \varphi \mapsto \varphi+$ const, $d \rho \mapsto d \rho, d \varphi \mapsto d \varphi$.
$x=\chi \cosh \psi, y=\chi \sinh \psi, x^{2}-y^{2}=\chi^{2}>0$

3. $d x \wedge d y=\rho d \rho \wedge d \varphi$.
4.

$$
d x \wedge d y=\frac{d z \wedge d \bar{z}}{-2 i}, \quad\left\{\begin{array}{l}
d z=d x+i d y \\
d \bar{z}=d x-i d y
\end{array}\right.
$$

5. $\mathbb{R}^{3}: d x \wedge d y \wedge d z=r^{2} \sin \theta d r \wedge d \theta \wedge d \varphi$.

For the unit sphere $S^{2}(r=1)$ we have Area $=\sin \theta d \theta \wedge d \varphi, 0 \leqslant \theta \leqslant \pi$.

Example 1.1. Express the 2-form $d x \wedge d y$ in polar coordinates.
Solution: From $d x=\cos \theta d r-r \sin \theta d \theta$ and $d y=\sin \theta d r+r \cos \theta d \theta$, we have

$$
\begin{aligned}
d x \wedge d y & =\cos \theta \cdot r \cos \theta d r \wedge d \theta-r \sin \theta \cdot \sin \theta d \theta \wedge d r \\
& =r \cos ^{2} \theta d r \wedge d \theta+r \sin ^{2} \theta d r \wedge \theta=r d r \wedge d \theta
\end{aligned}
$$

by noticing that $d r \wedge d r=0$ and $d \theta \wedge d \theta=0$.
[Aside: we may also apply the identities $r d r=x d x+y d y$ and $d \theta=(x d y-y d x) /\left(x^{2}+\right.$ y^{2}) to obtain

$$
r d r \wedge d \theta=(x d x+y d y) \wedge \frac{x d y-y d x}{x^{2}+y^{2}}=\frac{x^{2} d x \wedge d y-y^{2} d y \wedge d x}{x^{2}+y^{2}}=d x \wedge d y
$$

Example 1.3. Consider a mapping f from \mathbf{R}^{2} to \mathbf{R}^{2} sending (x, y) to (u, v), where $u=x^{2}-y^{2}$ and $v=2 x y$. Express $d u \wedge d v$ in terms of $d x \wedge d y$.

Solution: We have $d u=2 x d x-2 y d y$ and $d v=2 x d y+2 y d x$. Hence

$$
\begin{aligned}
d u \wedge d v & =(2 x d x-2 y d y) \wedge(2 x d y+2 y d x) \\
& =4 x^{2} d x \wedge d y-4 y^{2} d y \wedge d x=4\left(x^{2}+y^{2}\right) d x \wedge d y
\end{aligned}
$$

Example 1.4. Recall our favorite example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$, the angular form. Find its exterior derivative $d \omega$.

Solution: Rewrite the identity $\omega=(x d y-y d x) /\left(x^{2}+y^{2}\right)$ as $\left(x^{2}+y^{2}\right) \omega=x d y-y d x$. Take exterior derivatives of both sides. Using the product rule, the left hand side gives

$$
\begin{aligned}
d\left(\left(x^{2}+y^{2}\right) \omega\right) & =d\left(x^{2}+y^{2}\right) \wedge \omega+\left(x^{2}+y^{2}\right) d \omega \\
& =2(x d x+y d y) \wedge(x d y-y d x) /\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right) d \omega
\end{aligned}
$$

Here the expression $(x d x+y d y) \wedge(x d y-y d x)$ can be expanded as

$$
x^{2} d x \wedge d y-y^{2} d y \wedge d x=x^{2} d x \wedge d y+y^{2} d x \wedge d y=\left(x^{2}+y^{2}\right) d x \wedge d y
$$

(we have seen this in Example 1.2) and hence $d\left(\left(x^{2}+y^{2}\right) \omega\right)=2 d x \wedge d y+\left(x^{2}+y^{2}\right) d \omega$. On the other hand, $d(x d y-y d x)=d x \wedge d y-d y \wedge d x=2 d x \wedge d y$. Thus we have $2 d x \wedge d y+\left(x^{2}+y^{2}\right) d \omega=2 d x \wedge d y$. Cancelling $2 d x \wedge d y$, we get $\left(x^{2}+y^{2}\right) d \omega=0$.

Example 1.5. The general 1 -form in three variables x, y and z can be written as $\alpha=P d x+Q d y+R d z$, with P, Q, R functions of x, y, z. Find its exterior derivative $d \alpha$.

Solution: Using the identities $d P=P_{x} d x+P_{y} d y+P_{z} d z$ (recall that P_{x} stands for $\partial P / \partial x), d Q=Q_{x} d x+Q_{y} d y+Q_{z} d z$ and $d R=R_{x} d x+R_{y} d y+R_{z} d z$, we compute:

$$
\begin{aligned}
& d \alpha=d P \wedge d x+d Q \wedge d y+d R \wedge d z \\
= & \left(P_{x} d x+P_{y} d y+P_{z} d z\right) \wedge d x+\left(Q_{x} d x+Q_{y} d y+Q_{z} d z\right) \wedge d y+\left(R_{x} d x+R_{y} d y+R_{z} d z\right) \wedge d z \\
= & P_{y} d y \wedge d x+P_{z} d z \wedge d x+Q_{x} d x \wedge d y+Q_{z} d z \wedge d y+R_{x} d x \wedge d z+R_{y} d y \wedge d z \\
= & \left(R_{y}-Q_{z}\right) d y \wedge d z+\left(P_{z}-R_{x}\right) d z \wedge d x+\left(Q_{x}-P_{y}\right) d x \wedge d y .
\end{aligned}
$$

The reader should notice the connection between the exterior derivative $d \alpha$ and the curl of a vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ in classical vector analysis, which is defined by the identity

$$
\operatorname{curl} \mathbf{F} \equiv \nabla \times \mathbf{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)
$$

Also, notice the connection between $d f=f_{x} d x+f_{y} d y+f_{z} d z$ (here f is a function of three variables x, y and z) and the gradient of f defined by

$$
\operatorname{grad} f \equiv \nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}
$$

Example 10: Let $\omega=\left(x_{1}+x_{3}^{2}\right) d x_{1} \wedge d x_{2}$. Then

$$
\begin{aligned}
d \omega & =d\left(x_{1}+x_{3}^{2}\right) \wedge d x_{1} \wedge d x_{2} \\
& =d x_{1} \wedge d x_{1} \wedge d x_{2}+2 x_{3} d x_{3} \wedge d x_{1} \wedge d x_{2} \\
& =2 x_{3} d x_{3} \wedge d x_{1} \wedge d x_{2} \\
& =-2 x_{3} d x_{1} \wedge d x_{3} \wedge d x_{2} \\
& =2 x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

Notice the term with two $d x_{1}$'s is zero, and in the last two steps I just put $d \omega$ in "standard" form.

Problem 2.27 Consider on \mathbb{R}^{2} :

$$
\begin{aligned}
& X=\left(x^{2}+y\right) \frac{\partial}{\partial x}+\left(y^{2}+1\right) \frac{\partial}{\partial y}, \quad Y=(y-1) \frac{\partial}{\partial x} \\
& \theta=\left(2 x y+x^{2}+1\right) \mathrm{d} x+\left(x^{2}-y\right) \mathrm{d} y
\end{aligned}
$$

Compute:
(i) $[X, Y]_{(0,0)}$.
(ii) $\theta(X)(0,0)$.

Solution

(i)

$$
[X, Y]=\left(y^{2}-2 x y+2 x+1\right) \frac{\partial}{\partial x}, \quad \text { so } \quad[X, Y]_{(0,0)}=\left.\frac{\partial}{\partial x}\right|_{(0,0)} .
$$

(ii)

$$
\theta(X)(0,0)=\left(\left(2 x y+x^{2}+1\right)\left(x^{2}+y\right)+\left(x^{2}-y\right)\left(y^{2}+1\right)\right)(0,0)=0 .
$$

