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FYS4160: Preliminaries
While general relativity (GR) is much more self-contained than, for example, quantum field
theory, a certain amount of background knowledge will help significantly to master the
large amount of new concepts. These notes summarize some of the things that you should
know and feel comfortable with before starting this course, be it from previous courses or
from own reading. If you feel uncomfortable with any of the below concepts or terms, you
should as soon as possible review a suitable book or your notes of previous courses.

This write-up also fixes our notation and conventions (we will use the same as in the
book by Carroll). In particular, we will throughout adopt ‘natural units’ where ~ = c = 1
(though these constants are kept at some places for pedagogic reasons).

1 Special relativity
The time t and the position vector x (on the blackboard we will use ~x) can be combined
into a four-vector in Minkowski space xµ = (t, x) = (x0, x1, x2, x3). We use small greek
letters to denote space-time indices and small roman letters to denote spatial indices of
such four-vectors, i.e. µ, ν, ... = 0, 1, 2, 3 and i, j, ... = 1, 2, 3.1 Throughout the course, the
summation convention is used, in which repeated indices are always summed over. This
implies that any index that appears twice in an expression is a dummy index (i.e. its name
has no importance: xµxµ = xρxρ = x0x0 + x1x1 + x2x2 + x3x3) and that no index can appear
more than twice.2 For spacetime-indices, it is furthermore very important to keep track of
whether they are up or down; in particular, you should never encounter expressions like
aµbµ (see also below the comments about scalar products).

In Minkowski space, the metric tensor g (aka gµν, see footnote 1) is given by

gµν = ηµν ≡


−1

+1
+1

+1

 =
(
g−1

)
µν
≡ gµν. (1)

This is the most often used convention in GR, while in (both quantum and classical) field
theory the signature (+,−,−,−) is more common. We use the metric gµν to lower indices,
and the inverse metric gµν to raise indices. For example, xµ ≡ gµνxν = (−t, x) and xµ = gµνxν.
Note that while the displacement vector xµ = (t, x) is ‘naturally raised’, the derivative vector

1For Lorentz four-vectors we sometimes follow the standard, if somewhat confusing, convention of wri-
ting Aµ or Aµ instead of ‘A’; we thus use the same notation for a vector and its components, and it is only the
context that determines the correct interpretation. (This convention allows a simple distinction between cova-
riant (‘lower indices’) and contravariant (‘upper indices’) vectors – though these concepts will be introduced
in much more detail in the course). A Euclidian three-vector, in contrast, is always denoted as A (or ~A), while
its components are denoted with Ai.

2In rare occasions, we have expressions where a double index is not summed over. If there is a risk for
confusion, this will be indicated by an underscore. For example, xµxµ = x0x0 for µ = 0, and xµxµ = x1x1 for
µ = 1 etc.



is naturally lowered:

∂µ ≡
∂

∂xµ
=

(
∂

∂t
,∇

)
, so ∂µ =

(
−
∂

∂t
,∇

)
. (2)

A Lorentz four-vector in general is any object that transforms under a Lorentz trans-
formation Λ, described by a 4 × 4 matrix Λ

µ
ν, according to

Aµ → A′µ = Λµ
νA

ν (and thus Aµ → A′µ = Λ ν
µ Aν) . (3)

A Lorentz transformation is by definition any linear transformation that leaves the ‘length’
of a vector in Minkowski space invariant:3

ηµνxµxν !
= ηµνx′

µx′ν = ηµνΛ
µ
ρΛ

ν
σxρxσ , (4)

or equivalently, using matrix rather than index notation

xT · η · x !
= x′T · η · x′ = (Λ · x)T · η · Λ · x . (5)

(More generally, a Lorentz tensor is an object with several indices, T µ1µ2...
ν1ν2...

, that all trans-
form as above.) This implies that any scalar product involving Lorentz four-vectors is in-
variant (i.e. a ‘scalar’) under Lorentz transformations:

A · B ≡ AµBµ = AµBµ = A0B0 − A · B = const. (6)

Note that a scalar product always involves a contravariant and a covariant vector. Lorentz
transformations contain standard 3D rotations as well as Lorentz boosts.

Example: For a boost along the x-axis, Λ takes the form

Λµ
ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 , (7)

with β ≡ v/c denoting the relative velocity of the two frames and γ ≡ (1 − β2)−1/2. Using
Eq. (3), this implies the familiar transformation x→ x′ with

t → t′ = γ(t − βx) (8)
x → x′ = γ(x − βt) (9)
y → y′ = y (10)
z → z′ = z (11)

The most important four-vector that we will encounter, besides the position vector, is
the four-momentum. It satisfies p2 ≡ p · p = m2, where m is the invariant mass of the
particle. Writing the four-momentum in terms of the energy E and the 3-momentum p,

pµ = (E,p) , (12)

we thus directly get the famous relativistic dispersion relation for a massive particle:

E2 − p2 = m2 . (13)
3Note that Λ itself is a constant matrix, independent of space-time coordinates. In a certain sense, GR

consists in ‘nothing but’ replacing Λ→ Λ(xµ), i.e. in making the Lorentz symmetry local.



2 Classical dynamics: Lagrange & Hamilton
The state of a classical physical system at a given time t can be fully characterized by a set of
generalized coordinates qa, with a = 1, ...,N (for an unconstrained system, N equals three
times the number of particles), and their associated velocities q̇a ≡ dqa/dt. The principle of
least action requires that the true path q(t) taken by the system (the physical trajectory) is
the one that extremizes the action, i.e. the functional

S [q] ≡
∫ t2

t1
L(qa, q̇a) dt . (14)

The whole dynamics is thus governed by the Lagrangian L = L(qa, q̇a).4 Demanding δS =

0, in particular, leads to the Euler-Lagrange equations of motion:

dL
dqa
−

d
dt
∂L
∂q̇a

= 0 . (15)

Example. For a single particle in a potential V(x), we have L = 1
2mẋ2 − V in Cartesian

coordinates. Eq. (15) then reproduces the familiar mẍ = −∇V: with F = −∇V , this is
simply Newton’s 2nd law.

For each generalized coordinate qa, the canonically conjugated momentum pa is de-
fined as

pa ≡
∂L(q, q̇)
∂qa

. (16)

A Legendre transformation of the Lagrangian then leads to the Hamiltonian H, which no
longer depends on the velocities:5

H(p, q) ≡ paq̇a(p, q) − L[q, q̇(p, q)] . (17)

In this formulation, the system is described by the Hamilton equations of motion,

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (18)

i.e. 2N coupled first-order ODEs instead of the N second-order ODEs in Eq. (15).

Example. Considering again a single particle in a potential, we have H = p·ẋ−L = 1
2mp2+V .

The Hamilton equations then give as expected q̇ = p/m and ṗ = −∇V .
The (classical) theory of fields Φ(x) can be described as the limit N → ∞ of classical

mechanics. The field values at each space-time point then take the role of the generalized
coordinates, qa → Φ(xµ), and all the physics is encoded in a Lagrangian density L =

L(Φ, ∂µΦ) (which however often is simply referred to as ‘Langrangian’). Extremizing the
action S =

∫
d4xL, by requiring δS = 0, then again leads to Euler- Lagrange equations –

which now are manifestly relativistically invariant:6

∂L

∂Φ
− ∂µ

∂L

∂(∂µΦ)
= 0 . (19)

4For open systems, i.e. if an external force is present, L can also have an explicit time-dependence.
5NB: this requires that Eq. (16) can be solved for q̇a. Normally, this implies det ∂L/∂q̇a∂qb , 0.
6Note that Φ can also carry spacetime or internal indices. For a vector field A, e.g., simply replace Φ→ Aν

in this equation.



In analogy to the finite N case, we can define a canonical momentum density π(x) ≡ ∂L/∂Φ̇,
and a Hamiltonian densityH ≡ πΦ̇ − L.

Example. The simplest example is a real scalar field φ(x) with a potential V(φ), which is
described by

L = −
1
2

(∂µφ)(∂µφ) − V(φ) . (20)

The canonical momentum density is then π(x) = Φ̇(x) and the Hamiltonian density H =
1
2π

2 + 1
2 (∇Φ)2 + V(Φ). The equation of motion is known as the Klein-Gordon equation,

∂µ∂
µφ + dV/dφ ≡ �φ + V ′ = 0.

3 Newtonian gravity
In Newtonian physics, the force exerted by a point mass M on a test mass m is

F = GN
mM
r3 r , (21)

where r is the relative distance vector between the two masses and GN is Newton’s constant.
More generally, we can express the force experienced by a test mass m in the presence of a
gravitational field Φ as

F = −m∇Φ . (22)

Assuming that the mass m here is the same as in Newton’s 2nd law (see above), the gravi-
tational acceleration of a test body is thus independent of its mass, r̈ = −∇Φ. For a point
mass, the gravitational field obeys ∇Φ = −GN Mr/r3, while for an arbitrary mass distribu-
tion with density ρ it satisfies the Poisson equation:

∇2φ(x) = −ρ(x) . (23)

The Kepler problem describes a system of two point masses m1 and m2. In principle,
from Eq. (15), this leads to a system of 2 × 3 coupled equations of motion. Using conser-
vation of energy E and angular momentum L, however, the problem can be reduced to a
single differential equation that describes an effective particle in 1D:

E =
µ

2

(
dr
dt

)2

+ Ueff . (24)

Here, µ ≡ m1m2/(m1 + m2) is the so-called reduced mass of this particle and Ueff =

L2/(2µr2) − Gm1m2/r its potential. This equation can be directly integrated, via separa-
tion of variables, to give r(t). The orbit equation for the azimuthal angle, φ(r), can then
be obtained from dφ/dr = (dφ/dt)(dt/dr), where L = µr2dφ/dt is the (constant!) angular
momentum.



4 Mathematical tools
4.1 Basics of linear algebra
In GR, our main mathematical tools will be tensors and tensor fields. Since tensors are
nothing but multilinear maps, ideas of linear algebra come into play and prove useful to
complement geometric interpretations. A vector space over an abstract field in mathematics
is defined as a set T of objects (‘vectors’), together with two operations (the sum of two
vectors, as well as the multiplication of a vector with [the abstract version of] a number). In
this course, we are only interested in vector spaces over real numbers. Rather than listing
the various axioms, the most intuitive way of understanding a vector space is to say that
any linear combination of its elements produces again a vector. In mathematical language:

∀V,W ∈ T,∀ a, b ∈ � : (a + b)(V + W) = aV + aW + bV + bW ∈ T . (25)

A set of vectors {V(i)} ⊂ T is said to be linearly independent if it is not possible to find
any set of real numbers {ai} such that

∑
i aiV(i) = 0 (apart from all ai being zero). The

dimension of a vector space is the maximal number of linearly independent vectors Vi one
can have. Basis vectors {e(i)} are such a (not uniquely defined!) maximal set of linearly
independent vectors, with the additional property that

∣∣∣e(i)

∣∣∣2 = e(i) · e(i) = 1 (but in general
not e(i) · e( j) = δi j). From the above, it follows that every vector V can be decomposed in
terms of basis vectors,

V = V ie(i) , (26)

where the V i ∈ � are referred to as the vector components with respect to the specific basis
choice {e(i)}.
Note that in physics the specific vector spaces one is interested in are in addition always
characterized by the transformation property of their elements under the action of some
(typically Lie) group. As explained above, a 4-vector in special relativity for example is
defined by its transformation properties under Lorentz transformations, which in turn are
defined by all those linear transformations that leave the norm of the 4-vector invariant.
Likewise, 3-D vectors A are those that transform as Ai → Ri jA j under rotations, which
leaves AiAi invariant.7

Any vector space T has a corresponding dual vector space T ∗ of same dimension consis-
ting of linear functionals (often called one-forms) ϕ : T −→ �. Vector space operations in
T ∗ are defined by the respective operations in T :

∀ϕ, ψ ∈ T ∗,V ∈ T, a ∈ � : (ϕ + ψ)(V) = ϕ(V) + ψ(V) (27)
(aϕ)(V) = a(ϕ(V)) (28)

Given a basis {e(i)} of T, there exists a dual basis {e∗(i)} such that e∗(i)(e( j)) = δi j and we can
think of vectors as being linear scalar functions of one-forms via V(ϕ) := ϕ(V).

7There is an important conceptual difference between active and passive transformations here. In both
cases, the components transform as indicated and the norm of the vector is conserved. For an active trans-
formation, the basis vectors do not change, such that a 3-vector A is e.g. actually rotated in �3. For passive
transformations, on the other hand, the vector A = Aie(i) remains unchanged; this requires that the basis vec-
tors transform with the inverse transformation operation, e.g. e(i) →

(
R−1

)
i j

e( j) = R ji e( j) for rotations. It is
always the latter situation that is described by coordinate transformations.



Example. If we take T to be �n, that is the space of columns of n real numbers, then the
dual space �n∗ corresponds to the space of rows of n real numbers – acting by ordinary
matrix multiplication on the elements of T . Note the conceptual difference to an inner (or
‘scalar’ vector) product , which in this case is operationally the same but defined as a map
· : T × T −→ �.

4.2 Analysis in �n

This course will provide an introduction to differential geometry, the mathematical basis
for the description of GR. For this, we will require basic notions of topology and analysis
in�n. A subset U ⊂ �n is open if every point x ∈ U ⊂ �n has a neighborhood contained in
the subset, i.e. if for every x ∈ U there exists a number ε > 0 such that every point y ∈ �n

with Euclidean distance smaller than ε belongs to U as well.
Given two sets U,V ⊂ �n, a map φ : U −→ V is called bijective (or invertible) if each
element of V has at most one element of U mapped into it (i.e. φ is injective) and each
element of V has at least one element of U mapped into it (φ is surjective). For a bijective
map φ, we can define the inverse function φ−1 : V −→ U by (φ−1 ◦ φ)(x) = x for all x ∈ V .
To define differentiability of an arbitrary map f : �n −→ �m, we look at the component
functions f i : �n −→ �, f = ( f 1, ..., f m), and say that f is smooth if each component
function f i, i = 1, ...,m, is continuous and smooth (i.e. can be differentiated as many times
as you like). We use bijective smooth maps to compare two Euclidean spaces and to decide
whether they are “the same”: Two sets U and V are diffeomorphic if there exists a smooth
bijective map φ : U −→ V with smooth inverse φ−1 : V −→ U.

4.3 Dirac delta function
The Dirac delta ‘function’ δ(x) is not actually a function but a distribution, and is defined
by δ(x) = 0 for all x , 0, and

∫
dx δ(x) = 1. Useful relations include∫

dx f (x) δ (x − y) = f (y) , (29)∫
dx f (x) δ′ (x) = − f ′(0) , (30)∫
dx eikx = 2π δ(k) , (31)

δ( f (x)) =
∑

i

δ(x − xi)
| f ′(xi)|

, (32)

where the second equation can be understood from integration by parts, and the last one
only holds if the function f (x) only has 1st order zeros (at x = xi). Analogous definitions
and properties of the delta function apply in higher dimensions.



4.4 Fourier transforms
We will sometimes change between position and momentum space, with the following
convention for the Fourier transforms relating those two:

f (x) =

∫
d4k

(2π)4 e−ik·x f̃ (k) , (33)

f̃ (k) =

∫
d4x eik·x f (x) . (34)

Factors of 2π will thus always appear in the momentum integrals; for 3D integrals we need
to replace k · x→ k · x. Note that the ∼ superscript is often omitted if the argument is given
explicitly, e.g. f̃ (k) ≡ f (k) ≡ fk. Fourier transforms are an important tool to solve linear
differential equations.

Example. Let us solve Poisson’s equation (23). Fourier-transforming both sides gives

−

∫
d3k

(2π)3 e−ik·xρ(k) = ∇2
∫

d3k
(2π)3 e−ik·xφ(k) =

∫
d3k

(2π)3 (−k2)e−ik·xφ(k) , (35)

from which we can deduce ρk = k2φk (alternatively, we could have used the replacement
rule ∂ j → −ik j directly). Performing the inverse Fourier transform then gives

φ(x) =

∫
d3k

(2π)3 e−ik·x φk =

∫
d3k

(2π)3 e−ik·x k−2
∫

d3y eik·yρ(y) (36)

=
1

(2π)3

∫
d3y ρ(y)

∫ 2π

0
dϕ

∫ 1

−1
d cos θ

∫ ∞

0
d|k| ei cos θ|k||x−y| (37)

=
1

8π2

∫
d3y ρ(y)

∫ 1

−1
d cos θ

∫ ∞

−∞

d|k| ei cos θ|k||x−y|︸                  ︷︷                  ︸
2π δ(cos θ|x−y|)=2π δ(cos θ)/|x−y|

(38)

=

∫
d3y

ρ(y)
4π|x − y|

. (39)

4.5 Green’s functions
Green’s ‘functions’ (which often also rather are distributions), are an important tool to solve
differential equations of the form

Lx f (x) = g(x) . (40)

Here, Lx is a linear, differential operator in x, f the function to be determined and g an
arbitrary function that constitutes the inhomogeneous part of the ODE. A Green’s function
G of Lx is by definition any – often not uniquely determined – solution of

LxG(x, y) = −δ(x − y) . (41)



A Green’s function is thus, in a loose sense, the inverse of Lx. If Lx is translation invariant
(i.e. it does not change for x → x + x0, as is the case in most physics’ applications), the
Green’s function can in fact always be written as

G(x, y) = G(x − y) . (42)

If G is known, then a solution of Eq. (40) for (almost) arbitrary g(x) is given by

f (x) = −

∫
dy G(x − y)g(y) , (43)

which directly follows from the definitions of the Green’s and Dirac delta functions. NB:
With f (x) being a solution to Eq. (40), f (x) +

∑
ci fi,hom(x) is also a solution (where fi,hom

represent the homogenous solutions, i.e. those for which Lx fi,hom = 0)!

Example. Consider the d’Alembert operator, Lx = ∂µ∂
µ ≡ �. The homogeneous equation,

Lx fhom = 0, is the relativistic wave equation for massless fields and the solutions are plane
waves:

fhom = c1e−ikµxµ + c2eikµxµ , (44)

with kµ = (ω,k) and ω = |k|.8
The Green’s function of the d’Alembert operator can be found by taking the Fourier

transform of Eq. (41):

−

∫
d4k

(2π)4 eik·(x−y) = �

∫
d4k

(2π)4 eik·(x−y) G̃(k) = −

∫
d4k

(2π)4 eik·(x−y) kµkµ G̃(k) . (45)

Hence, G̃(k) = 1/k2 and therefore G(x − y) =
∫

d4k
(2π)4 eik·(x−y)/k2. The integration over k0 has

poles at k0 = ± |k| and by going to the complex plane (i.e. by making k0 complex) there are
four possible ways of how to avoid the poles and evaluate the integral using the tools of
complex analysis; correspondingly, there are four independent Green’s functions. One of
those is the retarded Green’s function

Gr(x − y) = −
1

4π |x − y|
δ
(
|x − y| − (x0 − y0)

)
Θ(x0 − y0) . (46)

For an arbitrary source distribution g(t, x), Eq. (43) then recovers the retarded solutions
familiar from classical electrodynamics:

f (t, x) =
1

4π

∫
d3y

g(tr, y)
|x − y|

, (47)

where tr = t − |x − y| is known as the retarded time (recall that c = 1).

8If the function that Lx acts on is a vector, e.g. the electric field E, the constant coefficients c1 and c2 must
also be vectors – those are referred to as polarization vectors. If the function is in addition divergence-free,
those polarization vectors must be orthogonal to the momentum; in vacuum, e.g., we have ∇ · E = 0 and
therefore c1 · k = c2 · k = 0.


