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Final exam
Lecture spring 2022: General Relativity (FYS4160)

 Carefully read all questions before you start to answer them! Note that you
do not have to answer the questions in the order presented here, so try to answer
those first that you feel most sure about. Keep your descriptions as short and
concise as possible! Answers given in English are preferred – but feel free to write
in Norwegian if you struggle with formulations! Maximal number of available
points: 50.

Good luck !!!

Problem 1 (11 points)

a) State the equivalence principle in its strongest form, as formulated by Einstein
when deriving the theory of general relativity. Argue why this principle strongly
suggests to describe gravity as being geometric in nature! What is the decisive
difference to other forces of nature, e.g. the electromagnetic force? (3 points)

b) State the equation of motion of a force-free test particle in special and gene-
ral relativity, in arbitrary coordinates, and discuss the difference! How would
external forces appear in these equations? (3 points)

c) Explain why a theory satisfying the equivalence principle must be formulated
in terms of tensorial quantities. Show that the Kronecker symbol δµν is a tensor
(i.e. it describes the components of a tensor in every coordinate system), while
the Levi-Civita symbol ε̃µνρσ is not. What can be done to promote the latter to
a tensorial quantity, and what is the interpretation (or most common applica-
tion) of the resulting tensor? (5 points)

Problem 2 (8 points)
A spacetime is said to be of constant positive curvature if it satisfies the relation

Rµνρσ =
1

L2
(gµρgνσ − gµσgνρ) . (1)

a) In n space-time dimensions, where δαα = n, how does the real constant L relate
to the Ricci scalar R ? (2 points)

b) Express the Riemann and Ricci tensors explicitly in terms of R, rather than L!
Would these expressions change for spacetimes with constant negative curva-
ture? (2 points)
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c) Show that such a spacetime with constant positive curvature solves Einstein’s
equations in vacuum for a cosmological constant Λ > 0, and state the value of
L for which this is the case (again in n dimensions)! (2 points)

d) The so-called de-Sitter space that you looked at in the previous problem can
be represented by the line element ds2 = dt2 − exp(Ct) (dr2 + r2dΩ). What is
the value of the constant C? In cosmology, an early period of inflation – where
the line-element was very close to that of de-Sitter space – is usually quoted as
being decisive in guaranteeing that the early universe was flat (i.e. no curvature)
to a very high degree (see also problem 4). Why is that no contradiction to the
positive curvature that you determined in c) for this spacetime? (2 points)

Problem 3 (15 points)
Consider a spacecraft hovering at a fixed point, located at a radial distance R away
from the horizon of a Schwarzschild black hole.

a) Calculate the thrust, i.e. outward acceleration, that is needed to maintain the
position of the spacecraft! How does this compare to the Newtonian result for
a point-like object of the same mass? (5 points)

b) At some point the engine suddenly fails, and the spacecraft is sucked into the
black hole. How much time passes on board of the spacecraft, from the time
it passes the event horizon until it reaches the singularity? Briefly discuss the
limiting cases of very small and very large R. (6 points)
[Hint: The definite integral

∫∞
0
dx (1 + x2)−2 = π/4 might come in handy...]

c) Assume that, instead, the crew quickly gets the engine to work again – before
they reach the event horizon, but still not sufficiently fast to avoid passing
the horizon. What is the rate dr/dτ by which the Schwarzschild coordinate r
decreases at least inside the black hole, independently of the (radial) trajectory
of the spacecraft? In order to maximize the time spent inside the event horizon,
how should the crew control the thrust of the engine (from the moment they
have control again)? For a black hole mass of about M ∼ 2 · 108M� – similar
in size to the supermassive black hole at the center of the Andromeda galaxy –
how many minutes would it take at most to reach the singularity, after passing
the horizon? (4 points)
[Hint: The Schwarzschild radius of the sun is 2.9 km.]

Problem 4 (16 points)
In this problem we want to derive how free particles move in Friedman-Robertson-
Waker spacetimes, where the line element can be written as

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (2)
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a) What type of coordinates are used here? State this line element instead in
Cartesian coordinates, using the fact that the spatial curvature of the universe
is observationally determined to be very close to zero. Why can we conclude
from this observation that spatial curvature can also be neglected at earlier
times? (3 points)

b) Show that the only non-vanishing Christoffel symbols are given by Γ0
ij = a2f(a)δij

and Γii0 = Γi0j = f(a)δij, stating the function f(a) explicitly ! (5 points)

c) Use the result from b) to express the equation of motion of a free ‘particle’ in
this spacetime in terms of its 3-momentum p = |p|. What kinds of astrophysical
objects do ‘particles’ here (not) refer to? (5 points)
[Hint: try to use the normalization of the 4-momentum !]

d) Finally, show that this implies p ∝ a−1, independently of the initial momentum
of the particle, and interpret the result physically! (3 points)

Useful formulae

Γµρσ =
1

2
gµν (gρν,σ + gνσ,ρ − gρσ,ν) (3)

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (4)

δµν =

{
1 if µ = ν
0 if µ 6= ν

(5)

ε̃i1...in =


1 for i1...in being an even permutation of 1,2,...,n
−1 for i1...in being an odd permutation of 1,2,...,n
0 otherwise

(6)

detA =
∑
i1...in

ε̃i1...inai11...ainn , (7)

where the latter holds for ii ∈ {1, ..., n} and any n × n matrix A with components
{aij}.
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