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Final exam
Lecture spring 2023: General Relativity (FYS4160)

⇝ Carefully read all questions before you start to answer them! Note that you
do not have to answer the problems in the order presented here, so try to answer
those first that you feel most sure about. In particular, questions marked with an
asterisk (∗) require somewhat more heavy calculations / algebra – so once you
feel you are getting stuck make sure to move on (and get back to these later).

Also note that you can (largely) solve each of the subproblems even if you haven’t
managed to solve the previous subproblems – but this requires to use the infor-
mation explicitly stated in the previous subproblems. Keep your descriptions as
short and concise as possible! Answers given in English are preferred, but feel
free to write in Norwegian if you struggle with formulations! Maximal number
of available points: 40.

Good luck !!!

Problem 1 (6 points)

a) State the equation of motion of a force-free test particle in special and gene-
ral relativity, in arbitrary coordinates, and discuss the difference! How would
external forces appear in these equations? (3 points)

b) Consider a spacecraft on the innermost stable circular orbit around a black hole,
that ejects a device to measure g-forces. What acceleration does this device
measure in the moment where it passes the event horizon? (1 point)

c) Consider an observer with 4-velocity Uµ close to a Kerr black hole. Show that
this observer measures the speed v of an object with 4-velocity V µ to be
(2 points)

v =
√

1− (UµV µ)−2. (1)

[Hint: Once you realize that there is a common theme to all of these problems, you
also realize that you may not actually need all information that is stated in order to
answer some of the questions.]

Problem 2 (17 points)
In a Friedman-Robertson-Waker spacetime, the line element can be written as

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdϕ2

]
. (2)
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a) What type of coordinates are used here? State this line element instead in
Cartesian coordinates, using the fact that the spatial curvature of the universe
is observationally determined to be very close to zero. Why can we conclude
from this observation that spatial curvature can also be neglected at earlier
times? (3 points)

b) Show that the only non-vanishing Christoffel symbols are given by Γ0
ij = a2u(a)δij

and Γi
j0 = Γi

0j = u(a)δij, stating the function u(a) explicitly ! (5 points)

c) Locally, one can always choose coordinates ξµ such that the line element is
that of flat space, i.e. ds2 = ηµνdξ

µdξν in Cartesian coordinates – or ds2 =
−(dξ0)2+(dξr)2+(ξr)2

[
(dξθ)2 + sin2 ξθ(dξϕ)2

]
in polar coordinates. Show that

the coordinate transformation relating the free-fall coordinates to the flat FRW
metric is of the form ∂ξ0/∂x0 = v(a), ∂ξi/∂xj = w(a)δij and state v(a) and w(a)
explicitly (you can choose either Cartesian or polar coordinates for this).
How does thus the ‘physical momentum’ pi ≡ mdξi/dτ of some particle with
mass m, as measured by a freely-falling observer, relate to the ‘coordinate mo-
mentum’ p̄i ≡ mdxi/dτ observed in the cosmic rest frame ? (4 points)

d)∗ The phase-space distribution f(ξµ, pi) of some particle species is typically stated
in terms of local (free-fall) coordinates and the conjugate momenta. The Liou-
ville operator L[f ] that appears on the l.h.s. of the Boltzmann equation in
general takes the form L[f ] = df/dτ . Evaluate it for the case of a flat FRW
spacetime! Using the result for L[f ], show that the co-moving number density
of a non-interacting collection of particles is conserved. (5 points)
[Hint: Start by expanding the total derivative, then change variables from p to
p̄ (while still treating f as an explicit function of t and pi). For the next step
you will find the result from b) useful. Finally, convert everything back to pi.
NB: You can (almost) completely solve this problem even if you did not find the
functional form of u, v and w] !

Problem 3 (17 points)
In this problem we investigate how a gravitational wave (GW) changes the frequency
ωγ of a laser in the presence of a gravitational wave with frequency ωg. For simplicity
we consider the effect on an individual photon, and compare the frequency measured
by two different observers; let us call them the source (S) and the detector (D). We
align the axes of our coordinate system such that the photon initially propagates in the
direction of the positive x-axis, i.e. it has an initial 4-momentum pµ|t=0 = (ω0, ω0, 0, 0)
in the frame of a freely falling observer.

a) In a general frame with metric gµν , what is the photon frequency ωγ that an
observer moving with 4-velocity uµ measures? Now consider the situation of
tiny perturbations to the metric by a GW that passes through, gµν = ηµν +hµν ,
inducing both small perturbations δpµ to the photon momentum and small
perturbations δuµ to the 4-velocities of observers initially at rest (with respect
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to a freely falling frame). State ωγ to leading order in the small perturbations!
(4 points)

b) You should have found that it is only the time-component of the momentum
perturbation, δp0, that enters in the expression for ωγ. Show that it, to leading
order, satisfies

δp0 = A

∫ λD

0

dλ′[Γ0
00 + 2Γ0

10 + Γ0
11

]
xµ=xµ

λ′,0
, (3)

where Γρ
µν denote the Christoffel symbols and λ is the affine parameter that

parameterizes the photon geodesic, with λ = 0 corresponding to t = 0 and
λD being the value of λ at the spacetime point where the photon is detected.
Further, we defined xµ

λ,0 ≡ (λω0, λω0, 0, 0). Determine the constant A ! (3 points)

c)∗ Now assume that we can choose coordinates such that S and D remain at rest
even in the presence of the GW (this is automatically satisfied for freely falling
observers in the TT gauge, to be studied below). Put the above above results
together to show that the observed frequency shift in that case is given by

ωD
γ − ωS

γ

ωD
γ

= B

∫ λD

0

dλ′ ∂0
[
h00+2h10+h11

]
xµ=xµ

λ′,0
, (4)

where ωS
γ is the frequency with which the photon is emitted by the source S at

t = 0, and ωD
γ is its frequency as measured by D. Determine the value of the

constant B ! (5 points)
[Hint: You will encounter an integral over a function f(x, y) that is of the form∫
dλ∂yf(x(λ), y(λ)); use partial integration to bring it into a form that only

involves f and ∂xf !]

d) The TT gauge is defined by hTT
µ0 = ηµνhTT

µν = ∂µhTT
µν = 0. In this gauge, the

equation of motion for a GW is given by □hTT
µν = 0. Write down the general

solution of this equation for a plane GW with frequency ωg that is propagating
in x2 (i.e. ‘y’) direction, in TT gauge, and compute the frequency shift that is
observed at a detector being located a distance L away from the sender.
(5 points)

Useful formulae

Γµ
ρσ =

1

2
gµν (gρν,σ + gνσ,ρ − gρσ,ν) (5)

δµν =

{
1 if µ = ν
0 if µ ̸= ν

(6)
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