Lecture spring 2024:
General Relativity

Problem sheet 0

\rightsquigarrow These problems are scheduled for discussion on Thursday, 22 January 2024, along with discussing questions related to necessary background knowledge for this course ('FYS4160: preliminaries').

Problem 1

This problem serves as a reminder to practice the use of index notation.
a) Write the following in index notation:

- ∇S (where S is a scalar).
- $\nabla \cdot \mathbf{A}, \nabla \times \mathbf{A}$ (where \mathbf{A} is a 3 D vector).
- Trace and Transpose of a matrix M.
b) Prove the following 3D identities, using index notation:
- $\nabla \cdot(\nabla \times \mathbf{A})=0$, where \mathbf{A} is a 3D vector.
- $\nabla \times(\nabla S)=0$, where S is a scalar.

Problem 2

And another fresh-up...
a) Are these equalities valid? Correct where necessary!

- $\partial_{\mu} x^{\nu}=\delta_{\mu}^{\nu}$
- $\partial_{\mu} x^{\mu}=1$
- $\partial^{\mu} x^{\nu}=g^{\mu \nu}$
- $T_{\alpha}{ }^{\beta}{ }_{\gamma}=g^{\beta \mu} T_{\alpha \mu \gamma}=g^{\mu \beta} T_{\alpha \mu \gamma}$
- $T_{\alpha}{ }^{\beta}{ }_{\beta}=g_{\alpha \mu} g^{\beta \alpha} T^{\mu}{ }_{\alpha \beta}$
b) Construct
- all independent Lorentz scalars from two four-vectors A and B
- all independent Lorentz scalars from (up to two copies of) a rank-2 tensor T, as well as from invoking one rank- 2 tensor T and two four-vectors A and B
- all independent Lorentz four-vectors from a scalar S and two four-vectors A and B

