Lecture spring 2024:
General Relativity

Problem sheet 4

\rightsquigarrow These problems are scheduled for discussion on Thursday, 22 February 2024.

Problem 12

Show that the flat two-dimensional torus, $T^{2}=S^{1} \times S^{1}$, is a manifold by explicitly constructing an appropriate atlas! (This is problem 2.3 in the book.)

Problem 13

In the lecture we just learned that the coordinate basis vectors for the tangent space T_{p} are given by $\hat{e}_{(\mu)}=\partial_{\mu}$.

- For any given coordinate system, what are the components of each of these 4 -vectors?
- What are the components of the Euclidian coordinate basis $\left\{\partial_{\mu}\right\}$ (in Minkowski space) expressed in spherical coordinates, and vice versa?
- In the coordinate basis, any vector A takes the form $A=A^{\mu} \partial_{\mu}$. Based on how we introduced general elements of T_{p}, try to give an intuitive / visual interpretation of the components A^{μ}.

Problem 14

The commutator, or Lie bracket, of two vector fields X and Y is defined by

$$
[X, Y](f) \equiv X(Y(f))-Y(X(f))
$$

where f is any function that takes values from a manifold to the real numbers. Show that

- $[X, Y]$ is itself a vector field.
- Its components, when expressed in the coordinate basis, are given by

$$
[X, Y]^{\mu}=X^{\lambda} \partial_{\lambda} Y^{\mu}-Y^{\lambda} \partial_{\lambda} X^{\mu}
$$

- the commutator of any pair of coordinate basis vectors $\left(\hat{e}_{(\mu)}=\partial_{\mu}\right)$ vanishes.

