Lecture spring 2024:

General Relativity

Problem sheet 5

\rightsquigarrow These problems are scheduled for discussion on Thursday, 29 February 2024.

Legend

* If pressed for time, make sure to try solving the other problem(s) before attempting this one

Problem 15*

The exterior derivative takes a p-form A and returns a $p+1$ form $\mathrm{d} A$, which in components is given by

$$
(\mathrm{d} A)_{\mu_{1} \ldots \mu_{n}}=(p+1) \partial_{\left[\mu_{1}\right.} A_{\left.\mu_{2} \ldots \mu_{p+1}\right]}
$$

Demonstrate the following properties of the exterior derivative:
a) $\mathrm{d}(\omega \wedge \eta)=(\mathrm{d} \omega) \wedge \eta+(-1)^{p} \omega \wedge(\mathrm{~d} \eta)$, where ω is any p-form and η a q-form.
a) $\mathrm{d}(\mathrm{d} A)=0$

Problem 16

Let f smoothly map a domain U of the $x y$-plane (in \mathbb{R}^{2}) into \mathbb{R}^{3} by the formula $f(x, y)=(x, y, F(x, y))$ so that $M=f(U)$ is the surface $z=F(x, y)$. Given any point $p \in M$ describe the tangent space $T_{p} M$. Show that the area of the surface is given by

$$
\int_{U} \sqrt{1+\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}}
$$

[Note that you can do the latter by simply starting with the Euclidian metric in 3D, and then substituting $d x, d y$ and $d z$, as we have just done in the lecture for the simple case of a sphere. If you are interested in a much 'neater' and more general way of doing this, closer to the spirit of differential geometry, have a look at Appendix A in the book - and convince yourself that you get the same result.]

Problem 17

A unit sphere \mathbb{S}^{2} can obviously be embedded in 3D space. Using the standard coordinates $x^{\mu}=(\theta, \phi)$ on the sphere, and cartesian coordinates $x^{\prime \mu}=(x, y, z)$ in 3 D , the corresponding map is given by

$$
x^{\prime \mu}(\theta, \phi)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) .
$$

We have shown in the lecture (see also Appendix A in the book) that a Euclidian metric in 3D induces the standard metric on the sphere, $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. Let us now assume, instead, that the 3D metric takes the form

$$
d s^{2}=\frac{1}{1-z^{2}} d x^{2}+\frac{1}{1-z^{2}} d y^{2}+\frac{1-2 z^{2}}{\left(1-z^{2}\right)^{2}} d z^{2} .
$$

What is the induced metric on the object we defined earlier as \mathbb{S}^{2} now (if we define it by the same map $x^{\mu} \rightarrow x^{\prime \mu}$ as above)? Discuss the result!

Problem 18

Let $T^{2}=S^{1} \times S^{1}$ be the torus, and let $\varphi: T^{2} \longrightarrow \mathbb{R}^{4}$ be given by

$$
\begin{aligned}
x^{1} \circ \varphi\left(\theta_{1}, \theta_{2}\right) & =\cos \left(\theta_{1}\right), \\
x^{2} \circ \varphi\left(\theta_{1}, \theta_{2}\right) & =\sin \left(\theta_{1}\right), \\
x^{3} \circ \varphi\left(\theta_{1}, \theta_{2}\right) & =2 \cos \left(\theta_{2}\right), \\
x^{4} \circ \varphi\left(\theta_{1}, \theta_{2}\right) & =2 \sin \left(\theta_{2}\right),
\end{aligned}
$$

where x^{1}, \ldots, x^{4} are the Euclidian coordinates on \mathbb{R}^{4}, and θ^{1} and θ^{2} are angular coordinates on T^{2}.
Express the Riemann metric induced on T^{2} by φ (from the Euclidean metric \mathbb{R}^{4}) in terms of the coordinates θ^{1} and θ^{2} (that is, compute $g_{i j}\left(\theta^{1}, \theta^{2}\right)$)! What is the volume of T^{2} relative to this metric?

