Lecture spring 2024:
General Relativity
Problem sheet 9
\rightsquigarrow These problems are scheduled for discussion on Thursday, 4 April 2024.

Problem 29

Consider an observer in the Schwarzschild geometry that is stationary with respect to the standard Schwarzschild coordinates, e.g. because she is sitting on the surface of a planet. Calculate the acceleration this observer experiences, as given by the magnitude of $d^{2} x^{i} / d \tau^{2}$. (Hint: First re-write this as the covariant directional derivative of the 4-velocity. Why?). Discuss the result in light of the Newtonian expectation!

Problem 30

In the (online) lecture we just introduced Eddington-Finkelstein coordinates to describe the Schwarzschild solution,

$$
\begin{aligned}
& v \equiv t+r^{*} \\
& u \equiv t-r^{*}
\end{aligned}
$$

where $r^{*}=r+R_{s} \log \left(r / R_{s}-1\right)$. Here, $R_{s}=2 G M$ is the Schwarzschild radius, and r, t are the radial and time coordinates of the Schwarzschild metric. Show explicitly that ingoing radial null geodesics are characterized by $v=$ const., while outgoing radial null geodesics are given by $u=$ const. Determine (again) the form of radial light cones for the different coordinate choices - i.e. (t, r) vs. (v, r) vs. (u, r) - and discuss qualitatively the interpretation of the behaviour of the light cones around $r=R_{s}$.

Problem 31

Do the very instructive exercise 5.5 in the book by Carroll, i.e. study how an object falling into a black hole appears to a distant observer!

