Lecture spring 2024:
General Relativity
Problem sheet 11
\rightsquigarrow These problems are scheduled for discussion on Thursday, 25 April
$\underline{\text { Legend }}$

* If pressed for time, make sure to try solving the other problem(s) before attempting this one
\dagger You need to wait for the lecture on Monday to be able to address this one

Problem 35

In the lecture we derived the linearized version of Einstein's equations,

$$
G_{\mu \nu}^{(0)}=8 \pi G T_{\mu \nu}
$$

where $G_{\mu \nu}^{(0)}$ is given by Eq. (7.8) in the book.
a) By deriving the transformation properties of $h_{\mu \nu}$ directly from the way it was introduced, $h_{\mu \nu} \equiv g_{\mu \nu}-\eta_{\mu \nu}$, show explicitly that this describes a Lorentzinvariant theory of a symmetric rank-2 tensor field (h) on flat spacetime.
b)* Show that this theory follows from the Lagrangian given in Eq. (7.9) in the book, after adding a matter part \mathcal{L}_{M} !

Problem 36

Discuss in what sense the theory introduced in the previous problem is invariant under the replacement $h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{(\mu} \xi_{\nu)}$, and relate this to the situation of gauge transformations in electrodynamics! Show explicitly that, for a metric decomposition as in $(7.16,7.17)$, the gauge transformations of linearized gravity are given by (7.33).

Problem 37 ${ }^{*, \dagger}$

The helicity of a particle is defined as its spin along the direction of motion. To measure this spin, one can rotate the polarization vector by an angle θ around the axis defined by the 3 -momentum \mathbf{k}. A polarization vector with helicity λ is then an eigenstate of the rotation matrix with eigenvalue $\exp [i \lambda \theta]$.
Consider now a gravitational wave propagating in x_{3} direction which, as we will shortly see in the lecture, can be described by two polarizations (h_{+}and h_{\times}). Introduce circular polarizations $h_{R, L} \equiv \frac{1}{\sqrt{2}}\left(h_{+} \pm i h_{\times}\right)$. Now transform to a new coordinate system that is related to the original one via a rotation by an angle θ in the $x_{1}-x_{2}$ plane. How do the polarization vectors $h_{R, L}^{\prime}$ in the new system look like, and what does this imply for the helicity of gravitational waves?

