
Solutions [and grading guidelines] to final exam in
FYS4160

[General grading guidelines: Stated points are given for arriving at the re-
spective expression in a fully satisfactory way. Whole point subtractions
for bad logic, physically wrong statements or expressions that are physically
wrong (e.g. wrong dimensions)! ‘Obvious’ small math errors (e.g. wrong
prefactors) only 0.5 pt. When possible, no subtraction for follow-up mis-
takes. Up to 1 extra point for outstanding explanations or demonstrating
special insight (but this cannot result in more points than available for a
given problem).]

Problem 1
a) In flat spacetime there exist coordinates (Cartesian coordinates, in particular),
where Γµ

ρσ = 0 everywhere [1 pt]. In general, e.g. in spherical coordinates, this is not
the case. If spacetime is curved, one can alway find coordinates such that Γµ

ρσ = 0
in any given point [1 pt] – but it is impossible to find a coordinate system such that
Γµ
ρσ = 0 everywhere [1 pt].

b) According to the equivalence principle, a freely falling observer should locally not
see any effect of gravity and hence observe the light pulse propagate along a straight
line [1 pt]. The time it takes for light to traverse 1 km is given by ∆t = L/c =
1/(3 · 105) s ≈ 3 · 10−6 s. With respect to the free-fall frame, the ground ‘moves
upwards’ with a constant acceleration of g ≈ 9.8m/s2 [1 pt]. In other words, after
∆t the photons have fallen a vertical distance of

∆h =
1

2
g(∆t)2 ≈ 5 · 10−11m .[1pt] (1)

(Note that in principle we should have integrated d2z/dτ 2 = g here – but since τ ≃ t
for the small velocities that we consider, we could directly take the Newtonian result.
[1 bonus point for discussing this])

Problem 2
a) The spacetime has two manifest isometries, i.e. coordinates that the metric does
not depend on, namely t and ϕ. The corresponding Killing vectors are given by
Kµ ≡ (∂t)

µ = (1, 0, 0, 0) and Rµ ≡ (∂ϕ)
µ = (0, 0, 0, 1) [1 pt]. Contracting a Killing

vector with the momentum pµ = mdxµ/dτ gives a quantity that is conserved along
geodesics. Hence,

E ≡ −Kµdxµ
dτ

= −gµνKµdx
ν

dτ
= −gtt

dt

dτ
=

(
1− 2GM

r

)
ṫ (2)

L ≡ Rµdxµ
dτ

= gµνR
µdx

ν

dτ
= gϕϕ

dϕ

dτ
= r2ϕ̇ sin2 θ (3)

are conserved in free fall [1 pt for each of these].

b) The stable circular orbit occurs at the miminum of Veff , i.e.

0 = V ′
eff =

GM

r2c
− L2

r3c
+

3GML2

r4c
= GMr2c − L2rc + 3GML2 , (4)
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and hence [1 pt]

L2 =
GMr2c

rc − 3GM
. (5)

The energy is obtained by inserting this value of L2 in the expression stated in the
problem (for dr/dτ = 0):

1

2

(
E2 − 1

)
= −GM

rc
+

(
1

2r2c
− GM

r3c

)
GMr2c

rc − 3GM
[1pt] (6)

= −GM
rc

+
1

2

GM(1− 2GM/rc)

rc − 3GM
(7)

Solving for E2:

E2 = 1− 2GM

rc
+
GM(1− 2GM/rc)

rc − 3GM
(8)

=
rc(rc − 3GM)

rc(rc − 3GM)
− 2GM(rc − 3GM)

rc(rc − 3GM)
+
GM(rc − 2GM)

rc(rc − 3GM)
(9)

=
(rc − 2GM)2

rc(rc − 3GM)
.[1pt] (10)

Hence, L/E =
√
GMr3c/(rc − 2GM).

c) The orbital frequency as measured by a far-away observer is

Ω =
dϕ

dt

[1pt]
=

ϕ̇

ṫ
=

L/r2c
E/(1− 2GM/rc)

=
L

E

rc − 2GM

r3c
= α

√
GM

r3c
, [0.5pt] (11)

where in the last step we used the information given in problem 2b) [though we just
calculated α = 1]. From this, we can trivially get the orbital period as T = 2π/Ω
[0.5 pt].

In the Newtonian case, we can equate gravitational and centrifugal acceleration
to obtain

GM

r2c
= Ω2rc ⇝ Ω =

√
GM

r3c
, (12)

i.e. exactly the same expresssion [1 pt]. This exact agreement is somewhat surprising
and in fact completely coincidental. Actually, the agreement is not exact as the
interpretation of r is different – the closer to the Horizon, the more differs r from the
‘standard’ radial variable in Euclidian space [1 bonus point for discussing this
aspect].

Problem 3
a) Writing the metric as

gµν = ηµν + hµν , (13)

the TT gauge-fixing conditions are given by [1 pt]

hµ0 = 0 ∂ihij = 0 , ηijhij = 0 . (14)
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To understand that this gauge is possible, we first noticed that the linearized Ein-
stein equations are invariant under hµν → hµν + 2∂(µ ξν) for arbitrary functions ξµ.
By choosing these four functions appropriately, it is then always possible to apply
the transverse gauge fixing condition, ∂ih0i = 0 and ∂isij = 0, where sij is the trace-
less part of hij (and contains the only propagating degrees of freedom of Einstein’s
equations). The constraint equations for the other metric perturbation components
then evaluated to [up to 2 pts for any reasonable description of these steps]
wi ≡ h0i = 0, ϕ ≡ −h00/2ϕ = 0 and ψ ≡ −1

6
ηijhij = 0 in vacuum [1 pt]. The latter

is important – for example, one cannot use the TT gauge to describe the production
of GWs.

b) In order to answer this question, we need to consider the geodesic equation [1 pt],

d2xi

dτ 2
= −Γi

µν

dxµ

dτ

dxν

dτ
. (15)

The Christoffel symbols for a metric of the form in Eq. (13) are given by

Γµ
ρσ =

1

2
gµν (gρν,σ + gνσ,ρ − gρσ,ν) (16)

=
1

2
ηµν (hρν,σ + hνσ,ρ − hρσ,ν) +O(h2) .[1pt] (17)

For observers initially at rest, we have uµ ≡ dxµ/dτ = (1,0) + O(h). Hence, the
r.h.s. becomes to leading order

−Γi
µν

dxµ

dτ

dxν

dτ
= −Γi

00u
0u0 = −Γi

00 =
1

2
ηiν (2h0ν,0 − h00,ν) , [1pt] (18)

which vanishes identically in TT gauge. Hence, d2xi

dτ2
= 0⇝ xi = const..[1 pt]

c) The general solution for the wave equation in TT gauge is

hµν = Cµνe
ikσxσ

, (19)

where kµ is the (light-like) wave vector – thus satisfying k2 = 0 [1 pt]. The conditions
on the polarization tensor follow from the TT conditions stated in 3a). For a plane
GW propagating in x3 direction, e.g., we have kµ = (ω, 0, 0, ω) and [1 pt, but only
if noting that this depends on the choice of z-axis.]

Cµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (20)

In order to measure distances, we need to consider the spacetime interval

ds2 = (ηµν + hµν)dx
µdxν (21)

= −dt2 + dx2 + h+(dx
2 − dy2)eiω(−t+z) + 2h×(dx dy)e

iω(−t+z) , [1pt] (22)
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where we have adopted the same choice for the z-axis, namely to align it with the
direction of k (and it is understood that we only take the real part of the above
expression).

The fact that the metric components gµ3 are independent of time means, as also
seen in the lecture, that there is no change in distance in the direction of the z-axis.
Thus, we only need to consider directions in the x− y plane [1 pt]. This means that,
as we move along some space-like parameterized curve (x(λ), y(λ)) to calculate the
distance,

∫
dλ
√
−gµν ẋµẋν with ẋµ ≡ dxµ/dλ, we want to make sure that we do not

pick up any time-dependence. For the ‘+’ polarization (h× = 0), this implies

dx2 − dy2 = 0 ⇝ y = ±x+ const. , [1pt] (23)

while for the ‘×’ polarization (h+ = 0), we need

dx dy = 0 ⇝ y = const. or x = const. .[1pt] (24)

In both cases, this describes directions at a 45◦ angle with respect to the polarization
directions.

Problem 4
a) With dt = adη, the metric now takes the form ds2 = −a2(η)(dη2 − dx2) [1 pt].
For light rays, ds2 = 0, we have dη2 = dx2, i.e. d|x|/dη = ±1 [1 pt]. The light
cones are thus always at 45◦ in these coordinate, independent of time; in the original
coordinates, we instead have d|x|/dt = ±a−1(t), i.e. light cones that change with the
expansion of the universe [1 pt].

b) The distance along the curve xµ(λ) is given by

∆s =

∫
ds =

∫ √
−gµν ẋµẋνdλ =

∫
a(η)

√
η̇2 − ẋ2dλ , [1pt] (25)

where · ≡ d/dλ. Since we are only interested in the spatial part of the geodesic, we
also only need to perform the variation with respect to ẋ (and x, which the above
expression however does not explicitly depend on):

0
!
= δx,ẋ∆s =

∫
a(η)

d
(√

η̇2 − ẋ2
)

dẋj
δ(ẋj)dλ =

∫
a(η)

−ẋj√
η̇2 − ẋ2

δ(ẋj)︸ ︷︷ ︸
d
dλ

δxj

dλ .[1pt] (26)

Integrating by parts [1 pt], we see that this equation can only be satisfied (for arbi-
trary δxj) if

d

dλ

(
a(η)

ẋj√
η̇2 − ẋ2

)
= 0 . (27)

From now on, we take λ → τ as this is required to bring the geodesic equation
into its standard form. Then, we can use dτ 2 = −gµνdxµdxν to conclude that 1 =

a
√
η̇2 − ẋ2 = const. [1 pt]. This simplifies the above condition to

0 =
d

dτ

(
a2ẋj

)
= 2aȧẋj + a2ẍj , (28)
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In other words, we find A = −2: [1 pt]

d2xi

dτ 2
= −2a−1ẋia′η̇ = −2a−1ẋia′

√
a−2 + ẋ2 (29)

c) Comoving / coordinate distances are described by xi, so the ‘comoving’ momentum
is defined w.r.t. motion in this coordinate system as pi ≡ mdxi/dτ . Multiplying this
by the scalar factor makes k the ‘physical’ momentum, per unit mass [1 pt]. We can
then use

d

dτ
ki ≡ d

dτ
(aẋi) = ȧẋi + aẍi = ȧẋi + Aȧẋi , [1pt] (30)

where in the last step we used the result stated in the problem formulation, noting
that a′η̇ = ȧ. We thus have

d

dτ
ki = (A+ 1)

ȧ

a
ki ⇝ ki ∝ aA+1 .[1pt] (31)

Using A = −2 from the previous result, this just means that physical momenta of
freely falling observers redshift a 1/a – which is the expected result [1 pt].

d) The momentum p ≡ |p| in the thermal equilibrium distributions stated among
the ‘useful formula’, through E =

√
p2 +m2 , is the physical momentum [1 pt for

realizing this in some form]. In other words, we have p = mk ∝ a−1 for free
particles (after decoupling) from the previous problem. At the point of decoupling,
t = t1, we still have a thermal distribution of relativistic particles (for which E = p):

f(p)|t1 =
1

exp(p1/T1)± 1
, (32)

where p1 ≡ p(t1) and T1 = T (t1). For later times, each of the momenta redshifts,
leading to a distribution

f(p) =
1

exp(p1/T1)± 1
=

1

exp[p(a/a1)/T1]± 1
≡ 1

exp(p/Tdec)± 1
, (33)

that indeed takes the same form as the initial one if we define the ‘temperature’ of the
decoupled species as Tdec ≡ T1(a1/a) [1 pt]. Note that we did not actually use that f
describes a thermal distribution; the same derivation would work for any distribution
of the form f(p, T ) = f(p/T ) [1 pt]. Notably, this is the case for an initially thermal
distribution both in the highly relativistic and in the highly non-relativistic limit –
but not in general.
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