Solutions [and grading guidelines] to final exam in FYS4160

[General grading guidelines: Stated points are given for arriving at the respective expression in a fully satisfactory way. Whole point subtractions for bad logic, physically wrong statements or expressions that are physically wrong (e.g. wrong dimensions)! 'Obvious' small math errors (e.g. wrong prefactors) only 0.5 pt . When possible, no subtraction for follow-up mistakes. Up to 1 extra point for outstanding explanations or demonstrating special insight (but this cannot result in more points than available for a given problem).]

Problem 1

a) In flat spacetime there exist coordinates (Cartesian coordinates, in particular), where $\Gamma_{\rho \sigma}^{\mu}=0$ everywhere [1 pt]. In general, e.g. in spherical coordinates, this is not the case. If spacetime is curved, one can alway find coordinates such that $\Gamma_{\rho \sigma}^{\mu}=0$ in any given point [$\mathbf{1} \mathrm{pt}$] - but it is impossible to find a coordinate system such that $\Gamma_{\rho \sigma}^{\mu}=0$ everywhere $[1 \mathrm{pt}]$.
b) According to the equivalence principle, a freely falling observer should locally not see any effect of gravity and hence observe the light pulse propagate along a straight line $[1 \mathrm{pt}]$. The time it takes for light to traverse 1 km is given by $\Delta t=L / c=$ $1 /\left(3 \cdot 10^{5}\right) \mathrm{s} \approx 3 \cdot 10^{-6} \mathrm{~s}$. With respect to the free-fall frame, the ground 'moves upwards' with a constant acceleration of $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}[1 \mathrm{pt}]$. In other words, after Δt the photons have fallen a vertical distance of

$$
\begin{equation*}
\Delta h=\frac{1}{2} g(\Delta t)^{2} \approx 5 \cdot 10^{-11} \mathrm{~m} \cdot[\mathbf{1} \mathrm{pt}] \tag{1}
\end{equation*}
$$

(Note that in principle we should have integrated $d^{2} z / d \tau^{2}=g$ here - but since $\tau \simeq t$ for the small velocities that we consider, we could directly take the Newtonian result. [1 bonus point for discussing this])

Problem 2

a) The spacetime has two manifest isometries, i.e. coordinates that the metric does not depend on, namely t and ϕ. The corresponding Killing vectors are given by $K^{\mu} \equiv\left(\partial_{t}\right)^{\mu}=(1,0,0,0)$ and $R^{\mu} \equiv\left(\partial_{\phi}\right)^{\mu}=(0,0,0,1)$ [1 pt]. Contracting a Killing vector with the momentum $p^{\mu}=m d x^{\mu} / d \tau$ gives a quantity that is conserved along geodesics. Hence,

$$
\begin{align*}
E & \equiv-K^{\mu} \frac{d x_{\mu}}{d \tau}=-g_{\mu \nu} K^{\mu} \frac{d x^{\nu}}{d \tau}=-g_{t t} \frac{d t}{d \tau}=\left(1-\frac{2 G M}{r}\right) \dot{t} \tag{2}\\
L & \equiv R^{\mu} \frac{d x_{\mu}}{d \tau}=g_{\mu \nu} R^{\mu} \frac{d x^{\nu}}{d \tau}=g_{\phi \phi} \frac{d \phi}{d \tau}=r^{2} \dot{\phi} \sin ^{2} \theta \tag{3}
\end{align*}
$$

are conserved in free fall [1 pt for each of these].
b) The stable circular orbit occurs at the miminum of $V_{\text {eff }}$, i.e.

$$
\begin{equation*}
0=V_{\mathrm{eff}}^{\prime}=\frac{G M}{r_{c}^{2}}-\frac{L^{2}}{r_{c}^{3}}+\frac{3 G M L^{2}}{r_{c}^{4}}=G M r_{c}^{2}-L^{2} r_{c}+3 G M L^{2} \tag{4}
\end{equation*}
$$

and hence [1 pt]

$$
\begin{equation*}
L^{2}=\frac{G M r_{c}^{2}}{r_{c}-3 G M} \tag{5}
\end{equation*}
$$

The energy is obtained by inserting this value of L^{2} in the expression stated in the problem (for $d r / d \tau=0$):

$$
\begin{align*}
\frac{1}{2}\left(E^{2}-1\right) & =-\frac{G M}{r_{c}}+\left(\frac{1}{2 r_{c}^{2}}-\frac{G M}{r_{c}^{3}}\right) \frac{G M r_{c}^{2}}{r_{c}-3 G M}[1 \mathrm{pt}] \tag{6}\\
& =-\frac{G M}{r_{c}}+\frac{1}{2} \frac{G M\left(1-2 G M / r_{c}\right)}{r_{c}-3 G M} \tag{7}
\end{align*}
$$

Solving for E^{2} :

$$
\begin{align*}
E^{2} & =1-\frac{2 G M}{r_{c}}+\frac{G M\left(1-2 G M / r_{c}\right)}{r_{c}-3 G M} \tag{8}\\
& =\frac{r_{c}\left(r_{c}-3 G M\right)}{r_{c}\left(r_{c}-3 G M\right)}-\frac{2 G M\left(r_{c}-3 G M\right)}{r_{c}\left(r_{c}-3 G M\right)}+\frac{G M\left(r_{c}-2 G M\right)}{r_{c}\left(r_{c}-3 G M\right)} \tag{9}\\
& =\frac{\left(r_{c}-2 G M\right)^{2}}{r_{c}\left(r_{c}-3 G M\right)} \cdot[1 \mathrm{pt}] \tag{10}
\end{align*}
$$

Hence, $L / E=\sqrt{G M r_{c}^{3}} /\left(r_{c}-2 G M\right)$.
c) The orbital frequency as measured by a far-away observer is

$$
\begin{equation*}
\Omega=\frac{d \phi}{d t} \stackrel{[1 \mathrm{pt}]}{=} \frac{\dot{\phi}}{\dot{t}}=\frac{L / r_{c}^{2}}{E /\left(1-2 G M / r_{c}\right)}=\frac{L}{E} \frac{r_{c}-2 G M}{r_{c}^{3}}=\alpha \sqrt{\frac{G M}{r_{c}^{3}}},[0.5 \mathrm{pt}] \tag{11}
\end{equation*}
$$

where in the last step we used the information given in problem 2 b) [though we just calculated $\alpha=1$]. From this, we can trivially get the orbital period as $T=2 \pi / \Omega$ [0.5 pt$]$.

In the Newtonian case, we can equate gravitational and centrifugal acceleration to obtain

$$
\begin{equation*}
\frac{G M}{r_{c}^{2}}=\Omega^{2} r_{c} \quad \rightsquigarrow \quad \Omega=\sqrt{\frac{G M}{r_{c}^{3}}} \tag{12}
\end{equation*}
$$

i.e. exactly the same expresssion [1 pt]. This exact agreement is somewhat surprising and in fact completely coincidental. Actually, the agreement is not exact as the interpretation of r is different - the closer to the Horizon, the more differs r from the 'standard' radial variable in Euclidian space [1 bonus point for discussing this aspect].

Problem 3

a) Writing the metric as

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \tag{13}
\end{equation*}
$$

the TT gauge-fixing conditions are given by $[1 \mathrm{pt}]$

$$
\begin{equation*}
h_{\mu 0}=0 \quad \partial^{i} h_{i j}=0, \quad \eta^{i j} h_{i j}=0 . \tag{14}
\end{equation*}
$$

To understand that this gauge is possible, we first noticed that the linearized Einstein equations are invariant under $h_{\mu \nu} \rightarrow h_{\mu \nu}+2 \partial_{(\mu} \xi_{\nu)}$ for arbitrary functions ξ^{μ}. By choosing these four functions appropriately, it is then always possible to apply the transverse gauge fixing condition, $\partial^{i} h_{0 i}=0$ and $\partial^{i} s_{i j}=0$, where $s_{i j}$ is the traceless part of $h_{i j}$ (and contains the only propagating degrees of freedom of Einstein's equations). The constraint equations for the other metric perturbation components then evaluated to [up to 2 pts for any reasonable description of these steps] $w_{i} \equiv h_{0 i}=0, \phi \equiv-h_{00} / 2 \phi=0$ and $\psi \equiv-\frac{1}{6} \eta^{i j} h_{i j}=0$ in vacuum $[1 \mathrm{pt}]$. The latter is important - for example, one cannot use the TT gauge to describe the production of GWs.
b) In order to answer this question, we need to consider the geodesic equation $[1 \mathrm{pt}]$,

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d \tau^{2}}=-\Gamma_{\mu \nu}^{i} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \tag{15}
\end{equation*}
$$

The Christoffel symbols for a metric of the form in Eq. (13) are given by

$$
\begin{align*}
\Gamma_{\rho \sigma}^{\mu} & =\frac{1}{2} g^{\mu \nu}\left(g_{\rho \nu, \sigma}+g_{\nu \sigma, \rho}-g_{\rho \sigma, \nu}\right) \tag{16}\\
& =\frac{1}{2} \eta^{\mu \nu}\left(h_{\rho \nu, \sigma}+h_{\nu \sigma, \rho}-h_{\rho \sigma, \nu}\right)+\mathcal{O}\left(h^{2}\right) \cdot[\mathbf{1} \mathrm{pt}] \tag{17}
\end{align*}
$$

For observers initially at rest, we have $u^{\mu} \equiv d x^{\mu} / d \tau=(1, \mathbf{0})+\mathcal{O}(h)$. Hence, the r.h.s. becomes to leading order

$$
\begin{equation*}
-\Gamma_{\mu \nu}^{i} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=-\Gamma_{00}^{i} u^{0} u^{0}=-\Gamma_{00}^{i}=\frac{1}{2} \eta^{i \nu}\left(2 h_{0 \nu, 0}-h_{00, \nu}\right),[\mathbf{1} \mathrm{pt}] \tag{18}
\end{equation*}
$$

which vanishes identically in TT gauge. Hence, $\frac{d^{2} x^{i}}{d \tau^{2}}=0 \rightsquigarrow x^{i}=$ const..[1 pt]
c) The general solution for the wave equation in TT gauge is

$$
\begin{equation*}
h_{\mu \nu}=C_{\mu \nu} e^{i k_{\sigma} x^{\sigma}}, \tag{19}
\end{equation*}
$$

where k^{μ} is the (light-like) wave vector - thus satisfying $k^{2}=0[1 \mathrm{pt}]$. The conditions on the polarization tensor follow from the TT conditions stated in 3a). For a plane GW propagating in x^{3} direction, e.g., we have $k^{\mu}=(\omega, 0,0, \omega)$ and [1 pt , but only if noting that this depends on the choice of z-axis.]

$$
C_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{20}\\
0 & h_{+} & h_{\times} & 0 \\
0 & h_{\times} & -h_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

In order to measure distances, we need to consider the spacetime interval

$$
\begin{align*}
d s^{2} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right) d x^{\mu} d x^{\nu} \tag{21}\\
& =-d t^{2}+d \mathbf{x}^{2}+h_{+}\left(d x^{2}-d y^{2}\right) e^{i \omega(-t+z)}+2 h_{\times}(d x d y) e^{i \omega(-t+z)},[\mathbf{1} \mathbf{~ p t}] \tag{22}
\end{align*}
$$

where we have adopted the same choice for the z-axis, namely to align it with the direction of \mathbf{k} (and it is understood that we only take the real part of the above expression).

The fact that the metric components $g_{\mu 3}$ are independent of time means, as also seen in the lecture, that there is no change in distance in the direction of the z-axis. Thus, we only need to consider directions in the $x-y$ plane $[1 \mathrm{pt}]$. This means that, as we move along some space-like parameterized curve $(x(\lambda), y(\lambda))$ to calculate the distance, $\int d \lambda \sqrt{-g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}$ with $\dot{x}^{\mu} \equiv d x^{\mu} / d \lambda$, we want to make sure that we do not pick up any time-dependence. For the ' + ' polarization ($h_{\times}=0$), this implies

$$
\begin{equation*}
d x^{2}-d y^{2}=0 \quad \rightsquigarrow \quad y= \pm x+\text { const. },[\mathbf{1} \mathbf{p t}] \tag{23}
\end{equation*}
$$

while for the ' \times ' polarization $\left(h_{+}=0\right)$, we need

$$
\begin{equation*}
d x d y=0 \quad \rightsquigarrow \quad y=\text { const. or } x=\text { const. } .[1 \mathrm{pt}] \tag{24}
\end{equation*}
$$

In both cases, this describes directions at a 45° angle with respect to the polarization directions.

Problem 4

a) With $d t=a d \eta$, the metric now takes the form $d s^{2}=-a^{2}(\eta)\left(d \eta^{2}-d \mathbf{x}^{2}\right)[1 \mathbf{p t}]$. For light rays, $d s^{2}=0$, we have $d \eta^{2}=d \mathbf{x}^{2}$, i.e. $d|\mathbf{x}| / d \eta= \pm 1[1 \mathbf{p t}]$. The light cones are thus always at 45° in these coordinate, independent of time; in the original coordinates, we instead have $d|\mathbf{x}| / d t= \pm a^{-1}(t)$, i.e. light cones that change with the expansion of the universe [1 pt$]$.
b) The distance along the curve $x^{\mu}(\lambda)$ is given by

$$
\begin{equation*}
\Delta s=\int d s=\int \sqrt{-g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}} d \lambda=\int a(\eta) \sqrt{\dot{\eta}^{2}-\dot{\mathbf{x}}^{2}} d \lambda,[\mathbf{1} \mathbf{~ p t}] \tag{25}
\end{equation*}
$$

where $\cdot \equiv d / d \lambda$. Since we are only interested in the spatial part of the geodesic, we also only need to perform the variation with respect to $\dot{\mathbf{x}}$ (and \mathbf{x}, which the above expression however does not explicitly depend on):

$$
\begin{equation*}
0 \stackrel{!}{=} \delta_{\mathbf{x}, \dot{\mathbf{x}}} \Delta s=\int a(\eta) \frac{d\left(\sqrt{\dot{\eta}^{2}-\dot{\mathbf{x}}^{2}}\right)}{d \dot{x}^{j}} \delta\left(\dot{x}^{j}\right) d \lambda=\int a(\eta) \frac{-\dot{x}_{j}}{\sqrt{\dot{\eta}^{2}-\dot{\mathbf{x}}^{2}}} \underbrace{\delta\left(\dot{x}^{j}\right)}_{\frac{d}{d \lambda} \delta x^{j}} d \lambda .[\mathbf{1} \mathbf{~ p t}] \tag{26}
\end{equation*}
$$

Integrating by parts [1 pt], we see that this equation can only be satisfied (for arbitrary δx^{j}) if

$$
\begin{equation*}
\frac{d}{d \lambda}\left(a(\eta) \frac{\dot{x}_{j}}{\sqrt{\dot{\eta}^{2}-\dot{\mathbf{x}}^{2}}}\right)=0 . \tag{27}
\end{equation*}
$$

From now on, we take $\lambda \rightarrow \tau$ as this is required to bring the geodesic equation into its standard form. Then, we can use $d \tau^{2}=-g_{\mu \nu} d x^{\mu} d x^{\nu}$ to conclude that $1=$ $a \sqrt{\dot{\eta}^{2}-\dot{\mathbf{x}}^{2}}=$ const. [1 pt]. This simplifies the above condition to

$$
\begin{equation*}
0=\frac{d}{d \tau}\left(a^{2} \dot{x}_{j}\right)=2 a \dot{a} \dot{x}_{j}+a^{2} \ddot{x}_{j}, \tag{28}
\end{equation*}
$$

In other words, we find $A=-2$: $[1 \mathrm{pt}]$

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d \tau^{2}}=-2 a^{-1} \dot{x}^{i} a^{\prime} \dot{\eta}=-2 a^{-1} \dot{x}^{i} a^{\prime} \sqrt{a^{-2}+\dot{\mathbf{x}}^{2}} \tag{29}
\end{equation*}
$$

c) Comoving / coordinate distances are described by x^{i}, so the 'comoving' momentum is defined w.r.t. motion in this coordinate system as $p^{i} \equiv m d x^{i} / d \tau$. Multiplying this by the scalar factor makes \mathbf{k} the 'physical' momentum, per unit mass [1 pt$]$. We can then use

$$
\begin{equation*}
\frac{d}{d \tau} k^{i} \equiv \frac{d}{d \tau}\left(a \dot{x}^{i}\right)=\dot{a} \dot{x}^{i}+a \ddot{x}^{i}=\dot{a} \dot{x}^{i}+A \dot{a} \dot{x}^{i},[1 \mathrm{pt}] \tag{30}
\end{equation*}
$$

where in the last step we used the result stated in the problem formulation, noting that $a^{\prime} \dot{\eta}=\dot{a}$. We thus have

$$
\begin{equation*}
\frac{d}{d \tau} k^{i}=(A+1) \frac{\dot{a}}{a} k^{i} \rightsquigarrow \quad k^{i} \propto a^{A+1} \cdot[\mathbf{1} \mathbf{~ p t}] \tag{31}
\end{equation*}
$$

Using $A=-2$ from the previous result, this just means that physical momenta of freely falling observers redshift a $1 / a$ - which is the expected result [1 pt$]$.
d) The momentum $p \equiv|\mathbf{p}|$ in the thermal equilibrium distributions stated among the 'useful formula', through $E=\sqrt{p^{2}+m^{2}}$, is the physical momentum [1 pt for realizing this in some form]. In other words, we have $\mathbf{p}=m \mathbf{k} \propto a^{-1}$ for free particles (after decoupling) from the previous problem. At the point of decoupling, $t=t_{1}$, we still have a thermal distribution of relativistic particles (for which $E=p$):

$$
\begin{equation*}
\left.f(p)\right|_{t_{1}}=\frac{1}{\exp \left(p_{1} / T_{1}\right) \pm 1}, \tag{32}
\end{equation*}
$$

where $p_{1} \equiv p\left(t_{1}\right)$ and $T_{1}=T\left(t_{1}\right)$. For later times, each of the momenta redshifts, leading to a distribution

$$
\begin{equation*}
f(p)=\frac{1}{\exp \left(p_{1} / T_{1}\right) \pm 1}=\frac{1}{\exp \left[p\left(a / a_{1}\right) / T_{1}\right] \pm 1} \equiv \frac{1}{\exp \left(p / T_{\mathrm{dec}}\right) \pm 1} \tag{33}
\end{equation*}
$$

that indeed takes the same form as the initial one if we define the 'temperature' of the decoupled species as $T_{\text {dec }} \equiv T_{1}\left(a_{1} / a\right)[1 \mathrm{pt}]$. Note that we did not actually use that f describes a thermal distribution; the same derivation would work for any distribution of the form $f(p, T)=f(p / T)[1 \mathrm{pt}]$. Notably, this is the case for an initially thermal distribution both in the highly relativistic and in the highly non-relativistic limit but not in general.

