FYS4160 - General Relativity
 Problem Set 0 Solutions
 Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.
If you spot any typos, mistakes, don't hesitate to contact me at halvor.melkild@fys.uio.no. For any physics related question please use the forum at astro-discourse.uio.no.
The idea of these solutions is to give you a sense of what a 'model' answer should be, and they also elaborate on some discussions from the help sessions. I try to make them "pedagogical": i.e. hopefully comprehensive and most steps should be explained.

Problem 1. Index notation

a) $-(\nabla S)_{i}=\partial_{i} S$

- $\nabla \cdot \mathbf{A}=\partial_{i} A^{i}$
- $(\nabla \times \mathbf{A})_{i}=\epsilon_{i j k} \partial^{j} A^{k}$
- $\operatorname{Tr}(M)=M_{i j} \delta^{i j}=M^{i}{ }_{i}$
- $\left(M_{i j}\right)^{T}=M_{j i}$
b) $\quad \nabla \cdot(\nabla \times \mathbf{A})=0$, where \mathbf{A} is a 3 D vector:
$\partial_{i}\left(\epsilon^{i j k} \partial_{j} A_{k}\right)=\epsilon^{i j k} \partial_{i} \partial_{j} A_{k}=\epsilon^{i j k} \partial_{(i} \partial_{j)} A_{k}=\epsilon^{(i j) k} \partial_{(i} \partial_{j)} A_{k}=0$.
Step three to four follows from equation (1.83) in Carroll. The answer is then zero because of the antisymmetry of $\epsilon^{i j k}$ - it contributes no symmetric part when summed over.
- $\nabla \times(\nabla S)=0$, where S is a scalar:
$\epsilon^{i j k} \partial_{j}\left(\partial_{k} S\right)=\epsilon^{i j k} \partial_{(j} \partial_{k)} S=\epsilon^{(i j) k} \partial_{(j} \partial_{k)} S=0$ (Same argument as above.)

Problem 2. Index notation part 2, electric boogaloo

a) - $\partial_{\mu} x^{\nu}=\delta_{\mu}^{\nu}$

Right: $\partial_{\mu} x^{\nu}=\frac{\partial x^{\nu}}{\partial x^{\mu}}=\delta_{\mu}^{\nu}$

- $\partial_{\mu} x^{\mu}=1$

Wrong: $\partial_{\mu} x^{\mu}=\delta_{\mu}^{\mu}=4$

- $\partial^{\mu} x^{\nu}=g^{\mu \nu}$

Right: $\partial^{\mu} x^{\nu}=g^{\mu \rho} \partial_{\rho} x^{\nu}=g^{\mu \rho} \delta_{\rho}^{\nu}=g^{\mu \nu}$

- $T_{\alpha}{ }^{\beta}{ }_{\gamma}=g^{\beta \mu} T_{\alpha \mu \gamma}=g^{\mu \beta} T_{\alpha \mu \gamma}$

Right: the metric is sym-metric (I'll show myself out).

- $T_{\alpha}{ }^{\beta}{ }_{\beta}=g_{\alpha \mu} g^{\beta \alpha} T^{\mu}{ }_{\alpha \beta}$

Wrong: this is a case of nonsensical notation, there are three α 's - the sum over them is meaningless. Replace with a different dummy index to get $T_{\alpha}{ }^{\beta}{ }_{\beta}=g_{\alpha \mu} g^{\beta \nu} T^{\mu}{ }_{\nu \beta}=g^{\beta \nu} T_{\alpha \nu \beta}$
b) - All independent Lorentz scalars from two four-vectors A and B :
$A^{\mu} A_{\mu}, B^{\mu} B_{\mu}, A^{\mu} B_{\mu}$ (Lorentz scalar here simply means no free indices.)

- All independent Lorentz scalars from a rank-2 tensor T :
$T^{\mu \nu} T_{\mu \nu}, T^{\mu \nu} T_{\nu \mu}, T^{\mu}{ }_{\mu}, T^{\mu}{ }_{\nu} T^{\nu}{ }_{\rho} T^{\rho}{ }_{\mu}, T^{\mu}{ }_{\nu} T^{\nu}{ }_{\rho} T^{\rho}{ }_{\lambda} T^{\lambda}{ }_{\mu}, \ldots$ (again, no free indices)
The list can go on forever, but the list of independent scalars is still finite, as the number of components of T is finite.
- All independent Lorentz scalars from a rank-2 tensor T and two four-vectors A and B :
$T^{\mu \nu} A_{\mu} A_{\nu}, T^{\mu \nu} A_{\mu} B_{\nu}, T^{\mu \nu} B_{\mu} A_{\nu}, T^{\mu \nu} B_{\mu} B_{\nu}, T^{\mu}{ }_{\mu} A^{\nu} B_{\nu}, T^{\mu}{ }_{\nu} T^{\nu}{ }_{\rho} A^{\rho} A_{\mu}, T^{\mu \nu} T_{\mu \nu} A^{\rho} A_{\rho}, \ldots$ (no free indices again - double check though!)
- All independent Lorentz four-vectors from a scalar S and two four-vectors A and B : $S A^{\mu}, S B^{\mu}$ (Four-vector means one free index, so these are the only combinations.)

