FYS4160 - General Relativity
Problem Set 3 Solutions
Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.

If you spot any typos, mistakes, don’t hesitate to contact me at . For any physics
related question please use the forum at

The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical™ i.e. hopefully comprehensive
and most steps should be explained.

Problem 9. Geodesic equation

(a) First things first - why doesn’t the variation work for photons? Varying the action
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will lead to the geodesic equation. If we do the first step in the variation, we find that

dxt dxv
652/(5 _gﬂVﬁ?dT

/1 dzt dzv\ ~V/? 5 dat '’
= | | —9p———— —Gu———— | dT.
2 i dr dr I dr dt

This doesn’t work for photons since the spacetime interval for null trajectories is ds?> = 0, which means
we're dividing by zero with the [(stuff) /2] term.

Also: what is the most general choice of A, the most general affine parameter, that will still keep the
geodesic equation in its normal form? What this means is: what can A be and still have the action’s
variation result in
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where a dot denotes differentiation with respect to this affine parameter, A.

We can start by parameterising the affine parameter as a function, since we want the most general
choice for it. We do this as a of function the proper time, A = A(7), the variable of integration in the
original action. Then we’ll see what values of A\ keep the geodesic equation invariant.

The generic coordinate variable X* is a function of A; and so with our parameterisation of the geodesic
curve X#(1) = X*(\(7)), we can calculate the first and second derivatives by differentiation with
respect to 7:
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I used the chain and product rule, and to get the second term in the second derivative we use the
result from the first derivative.
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(b)

Since our geodesic varies with respect to A, we need to invert the above and express it in terms of the
A derivatives:
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The geodesic equation becomes, considering path terms only
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After dividing by (dr/d)\)? (non-zero for an monotonic parameter transformation), we get left with
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As such, we require
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with a, b constants, to retain the geodesic’s canonical form. This is the most general form in which A
can be and still give us the correct geodesic equation.
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The action now reads
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which follows the derivation in the book, p. 106-108, only now without the “division by zero” problems

hurray!). This geodesic equation is valid for photons (ds? = 0) following a curve that satisfies this
g g

equation, K = guu% df; = 0. I won’t include the details here because it’s step-for-step in Carroll.

Problem 10. Prolate spherical coordinates

Problem 2.7 in Carroll reads:

Prolate spheroidal coordinates can be used to simplify the Kepler problem in celestial mechanics. They are
related to the usual cartesian coordinates (z,y, z) of Euclidean three-space by

x = sinh x sin 6 cos ¢
y = sinh z sin §sin ¢
z = cosh z cosf

Restrict your attention to the plane y = 0 and answer the following questions.

(a) What is the coordinate transformation matrix dz*/dz?" relating (z, z) to (x,6)?
(b) What does the line element ds? look like in prolate spheroidal coordinates?



(a) In this coordinate system, the y-plane corresponds to ¢ = 0. Hence,

2 = sinh x sin 6
z = cosh y cos .

The coordinate transformation matrix becomes
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(b) For the line element, we find the following:
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dx = — dx + — df = cosh xsin 0 dx + sinh x cos 0 df
ax o0
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dz = — dx + — df = sinh x cos 6 dx — cosh x sin 6 df
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Using cosh? z — sinh? 2 = 1, the end result is

ds? = da? 4+ d2° = (Sinh2 X + sin? 9) (dx2 + d92) .

Problem 11. GPS satellite

(a) Special relativity implies that the clocks on a moving satellite tick slower than on Earth. In particular,
ATsat = ATEarth/'Y, and using
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we find for ATgern = 1 day the time difference
1
(ATsat — ATEarth)SR = ( — 1) -86400 s = —3.7 HUS.
Y
As expected, less time passed on the satellite than on Earth.

You may be justifiably worried about the fact that the satellite is in orbit and must undergo acceleration
as its velocity constantly changes direction. Note however that the magnitude of its velocity does not
change. So at each point of the satellite’s orbit, it is instantaneously in an inertial frame, where clocks
run slower than on Earth by a fixed factor . This is spelled out in the Q&A below, borrowed from

Perimeter Institute.



FREQUENTLY ASKED QUESTIONS Imagine a second object with the same velocity but which

O - At different positions in its orbit, a GPS satellite will is not accelerating (see Figure 5). This object is in an inertial

have differing speeds relative to different GPS receivers. frame and so, using Equation 1, we can calculate that we

Given this, do we need to adjust the speed used in the see its clock running slow by 8.3 x 10" s per second. The

equation for time dilation to account for this variation? GPS satellite shares the same instantaneous motion and so

A - In principle, we do need to use a different value for v we will also see its clock running slow by the same amount.

in Equation 1 depending on the precise speed of a given In the next instant, the satellite clock shares the same motion

satellite relative to a particular receiver. However, the speed as a third object moving at 3874 km/s in a slightly different

of the satellites (3874 m/s) is much larger than the speed inertial frame. So, its clock runs slow by the same amount as

of a GPS receiver as it moves with Earth’s rotation (465 in the previous instant.

m/s at the equator). Differences in the values of the relative

speed between a satellite and a receiver result in variations Continuing this process over the satellite’s entire orbit, we

in the amount of time dilation of just 1% at most and so are find that the satellite’s clock runs slow by 8.3 x 107" s per

insignificant for the current accuracy of the GPS. second throughout its orbit. We can use special relativity at
each instant of the satellite’s motion and then add up all of

O - GPS satellites are in orbit and so are accelerating. the amounts of time dilation to calculate the total amount.

They are not in inertial reference frames. Similarly, GPS Even though the satellite is accelerating, by comparing

receivers are accelerating due to Earth's rotation and so it to other objects in inertial frames moving at the same

are also not in inertial frames. Given this, how can we instantaneous speeds, we can use special relativity to

use special relativity, which primarily deals with inertial determine how slowly its clock runs.

frames, to calculate the amount of time dilation?

A - The reason we can use this theory is that the acceleration
of GPS receivers (0.034 m/s?) is so small that we can ignore
it. Over the course of one second, the acceleration changes
each receiver's speed by just 0.034 m/s. For a receiver at
the equator, this is just 0.007% of its speed due to Earth's ._)
rotation. So, the effect the acceleration has on the amount
of time dilation is at most only about 0.007% of the total
value per day of 7 ps. This corresponds to just 0.0005 ps,
a negligible effect.
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Approximating GPS receivers as being in inertial frames, a
GPS satellite moves at a speed of 3874 m/s relative to this
frame. At each moment in time, it has an instantaneous
velocity of 3874 m/s along its orbit.

(b) From general relativity we need to account for the effect of Earth’s gravitational field on both clocks.
In particular, we know that

ATsat = At\/ 1 + 2¢(rsat)
ATgaren = At\/1 4+ 2¢(TEartn),

where we used the gravitational potential (per unit of mass)
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At denotes the amount of time that passed for an observer infinitely far away and unaffected by
Earth’s gravitational field. Furthermore, we know that rgqmn = 6378 km, rsar = "Eartn + 20000 km
and Mgarn = 5.972 x 10%* kg.

From each of the first two equations, we can extract At; equating the two expressions yields

]- + 2¢(Tsat)

ATsar = ATgariny | ———2\Tsat)
! parth 1+ 2¢(rEarth)



Note that ¢ is dimensionless in natural units. To make the units in the equation work out when using
SI units, we need to make the replacement ¢ — ¢/c?.

Let us approximate this to first order in ¢/c?:

ATsat =~ ATEarth(l + ¢(Tsat)/02)(1 - ¢(TEarth)/C2)
- ATEarth(l + A¢/62) + O(¢2/C4)),

where

Ap/? = (d(Tsat) — O(rEarn))/c* = 5.26 x 10710,
Then we find, with ATgqe:n = 1 day, the time difference

(ATsat — ATparin)ar = Ad/c? - 86 400s = 45.5 ps.

As expected, the time on the surface of the Earth, i.e. deep inside the gravitational potential well of
the Earth, goes slower than for the satellite.

The total time difference after one day on Earth is
ATsat — ATpartn = (—3.7 + 45.5) us = 41.8 pus.

Note that once we pick the satellite to be the frame we refer to as moving, we need to be consistent in
this. So the value of ATset — ATgartn, must be kept in that order. If both SR and GR have the same
sign, you’ve mixed them up!

Finally, the value of 41.8 us corresponds to a length scale of ¢ - 41.8 us ~ 12.5 km, the scale of GPS
errors after just one day without relativistic corrections. That is to say, your Foodora driver would be
a good 12kms off your house without factoring in relativistic effects. (Thankfully the driver’s phone
does it for them).



