
FYS4160 - General Relativity
Problem Set 3 Solutions

Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.

If you spot any typos, mistakes, don’t hesitate to contact me at halvor.melkild@fys.uio.no. For any physics
related question please use the forum at astro-discourse.uio.no.

The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical”: i.e. hopefully comprehensive
and most steps should be explained.

Problem 9. Geodesic equation

(a) First things first - why doesn’t the variation work for photons? Varying the action

S =

∫
dτ =

∫ √
−gµν

dxµ

dτ

dxν

dτ
dτ

will lead to the geodesic equation. If we do the first step in the variation, we find that

δS =

∫
δ

√
−gµν

dxµ

dτ

dxν

dτ
dτ

=

∫
1

2

(
−gµν

dxµ

dτ

dxν

dτ

)−1/2

δ

(
−gµν

dxµ

dτ

dxν

dτ

)
dτ.

This doesn’t work for photons since the spacetime interval for null trajectories is ds2 = 0, which means
we’re dividing by zero with the [(stuff)−1/2] term.

Also: what is the most general choice of λ, the most general affine parameter, that will still keep the
geodesic equation in its normal form? What this means is: what can λ be and still have the action’s
variation result in

Ẍµ + Γµ
ρσẊ

ρẊσ = 0,

where a dot denotes differentiation with respect to this affine parameter, λ.

We can start by parameterising the affine parameter as a function, since we want the most general
choice for it. We do this as a of function the proper time, λ = λ(τ), the variable of integration in the
original action. Then we’ll see what values of λ keep the geodesic equation invariant.

The generic coordinate variable Xµ is a function of λ; and so with our parameterisation of the geodesic
curve Xµ(τ) = Xµ(λ(τ)), we can calculate the first and second derivatives by differentiation with
respect to τ :

d

dτ
=

d

dλ

dλ

dτ
and

d2

dτ2
=

d2λ

dτ2
d

dλ
+

(
dλ

dτ

)2
d2

dλ2

I used the chain and product rule, and to get the second term in the second derivative we use the
result from the first derivative.
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Since our geodesic varies with respect to λ, we need to invert the above and express it in terms of the
λ derivatives:

d

dλ
=

d

dτ

dτ

dλ
and

d2

dλ2
=

(
dτ

dλ

)2
d2

dτ2
−
(
dτ

dλ

)2
d

dλ

d2λ

dτ2

The geodesic equation becomes, considering path terms only

Ẍµ =⇒
(
dτ

dλ

)2
d2xµ

dτ2
− d2λ

dτ2

(
dτ

dλ

)2
dxµ

dλ

ẊρẊσ =⇒
(
dτ

dλ

)2
dẋρ

dτ

dẋσ

dτ

After dividing by (dτ/dλ)2 (non-zero for an monotonic parameter transformation), we get left with

d2xµ

dτ2
− d2λ

dτ2
dxµ

dλ
+ Γµ

ρσ
dẋρ

dτ

dẋσ

dτ
= 0.

As such, we require

d2λ

dτ2
= 0 ⇐⇒ λ = aτ + b,

with a, b constants, to retain the geodesic’s canonical form. This is the most general form in which λ
can be and still give us the correct geodesic equation.

(b) The action now reads

δS = δ

(
−gµν

dxµ

dτ

dxν

dτ

)
dτ = 0

which follows the derivation in the book, p. 106-108, only now without the “division by zero” problems
(hurray!). This geodesic equation is valid for photons (ds2 = 0) following a curve that satisfies this
equation, K = gµν

dxµ

dλ
dxν

dλ = 0. I won’t include the details here because it’s step-for-step in Carroll.

Problem 10. Prolate spherical coordinates

Problem 2.7 in Carroll reads:

Prolate spheroidal coordinates can be used to simplify the Kepler problem in celestial mechanics. They are
related to the usual cartesian coordinates (x, y, z) of Euclidean three-space by

x = sinhχ sin θ cosϕ
y = sinhx sin θ sinϕ
z = coshx cos θ

Restrict your attention to the plane y = 0 and answer the following questions.

(a) What is the coordinate transformation matrix ∂xµ/∂xv′
relating (x, z) to (χ, θ)?

(b) What does the line element ds2 look like in prolate spheroidal coordinates?



(a) In this coordinate system, the y-plane corresponds to ϕ = 0. Hence,

x = sinhχ sin θ

z = coshχ cos θ.

The coordinate transformation matrix becomes

∂xµ

∂xν′ =

(
∂x
∂χ

∂x
∂θ

∂z
∂χ

∂z
∂θ

)
=

(
coshχ sin θ sinhχ cos θ
sinhχ cos θ − coshχ sin θ

)
.

(b) For the line element, we find the following:

dx =
∂x

∂χ
dχ+

∂x

∂θ
dθ = coshχ sin θ dχ+ sinhχ cos θ dθ

dz =
∂z

∂χ
dχ+

∂z

∂θ
dθ = sinhχ cos θ dχ− coshχ sin θ dθ

.

Using cosh2 x− sinh2 x = 1, the end result is

ds2 = dx2 + dz2 =
(
sinh2 χ+ sin2 θ

) (
dχ2 + dθ2

)
.

Problem 11. GPS satellite

(a) Special relativity implies that the clocks on a moving satellite tick slower than on Earth. In particular,
∆τsat = ∆τEarth/γ, and using

1/γ = (1− v2)(1/2) ≃ 1− (v/c)2/2 = 1− 4.3× 10−11,

we find for ∆τEarth = 1 day the time difference

(∆τsat −∆τEarth)SR =

(
1

γ
− 1

)
· 86 400 s = −3.7 µs.

As expected, less time passed on the satellite than on Earth.

You may be justifiably worried about the fact that the satellite is in orbit and must undergo acceleration
as its velocity constantly changes direction. Note however that the magnitude of its velocity does not
change. So at each point of the satellite’s orbit, it is instantaneously in an inertial frame, where clocks
run slower than on Earth by a fixed factor γ. This is spelled out in the Q&A below, borrowed from
Perimeter Institute.



(b) From general relativity we need to account for the effect of Earth’s gravitational field on both clocks.
In particular, we know that

∆τsat = ∆t
√
1 + 2ϕ(rsat)

∆τEarth = ∆t
√
1 + 2ϕ(rEarth),

where we used the gravitational potential (per unit of mass)

ϕ(r) = −GMEarth

r
.

∆t denotes the amount of time that passed for an observer infinitely far away and unaffected by
Earth’s gravitational field. Furthermore, we know that rEarth = 6378 km, rsat = rEarth + 20 000 km
and MEarth = 5.972× 1024 kg.

From each of the first two equations, we can extract ∆t; equating the two expressions yields

∆τsat = ∆τEarth

√
1 + 2ϕ(rsat)

1 + 2ϕ(rEarth)
.



Note that ϕ is dimensionless in natural units. To make the units in the equation work out when using
SI units, we need to make the replacement ϕ → ϕ/c2.

Let us approximate this to first order in ϕ/c2:

∆τsat ≃ ∆τEarth(1 + ϕ(rsat)/c
2)(1− ϕ(rEarth)/c

2)

= ∆τEarth(1 + ∆ϕ/c2) +O(ϕ2/c4)),

where

∆ϕ/c2 = (ϕ(rsat)− ϕ(rEarth))/c
2 = 5.26× 10−10.

Then we find, with ∆τEarth = 1 day, the time difference

(∆τsat −∆τEarth)GR = ∆ϕ/c2 · 86 400s = 45.5 µs.

As expected, the time on the surface of the Earth, i.e. deep inside the gravitational potential well of
the Earth, goes slower than for the satellite.

The total time difference after one day on Earth is

∆τsat −∆τEarth = (−3.7 + 45.5) µs = 41.8 µs.

Note that once we pick the satellite to be the frame we refer to as moving, we need to be consistent in
this. So the value of ∆τsat −∆τEarth must be kept in that order. If both SR and GR have the same
sign, you’ve mixed them up!

Finally, the value of 41.8 µs corresponds to a length scale of c · 41.8 µs ≃ 12.5 km, the scale of GPS
errors after just one day without relativistic corrections. That is to say, your Foodora driver would be
a good 12kms off your house without factoring in relativistic effects. (Thankfully the driver’s phone
does it for them).


