
FYS4160 - General Relativity
Problem Set 5 Solutions

Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.
If you spot any typos, mistakes, don’t hesitate to contact me at halvor.melkild@fys.uio.no. For any physics
related question please use the forum at astro-discourse.uio.no.
The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical”: i.e. hopefully comprehensive
and most steps should be explained.

Problem 15. The exterior derivative.
Before we get into the questions, I know Carroll has a rather basic introduction and doesn’t really explain
anything beyond the definitions he gives. In addition, he eschews the local coordinate definition of differen-
tial forms. To (somewhat) remedy the situation, I’ll include here some extra information and resources, so
that you don’t have to accept entirely at face value what I write down later.

A differential form primer.
Carroll mentions differential forms, and then defines the wedge product and exterior derivative without much
explanation of the forms themselves.
Before we get into p-forms and all that jazz, let’s think about 1-forms (the easy bois). The set of 1-forms
denoted by dx1, . . . , dxn is defined such that they form a basis for the 1-forms on Rn, so any 1 -form φ may
be expressed in the form

φ =

n∑
i=1

fi(x)dx
i

where fi(x) is some function. If a vector field v on Rn has the form

v(x) =
(
v1(x), . . . , vn(x)

)
then at any point x ∈ Rn,

φx(v) =

n∑
i=1

fi(x)v
i(x).

Now, let’s upgrade to p-forms. Firstly, the 1-forms on Rn are part of an algebra1, called the algebra of
differential forms on Rn. The multiplication type in this algebra is called the wedge product, and it is
anti-symmetric:

dxi ∧ dxj = −dxj ∧ dxi.

One consequence of this is that dxi ∧ dxi = 0 (alternatively, one can start with the construction of a wedge
product in a way that takes dxi ∧ dxi = 0 as axiomatic, and uses this to prove the anti-symmetry relation).
If each differential form φ contains pdxi’s, the form is called a p-form. Functions alone are considered to be
0 -forms. A basis for the p-forms on Rn is given by the set{

dxi1 ∧ · · · ∧ dxip : 1 ≤ i1 < i2 < · · · < ip ≤ n
}
.

1The precise properties of algebras in this context are a bit hectic to go into here, but the Wikipedia article
introduces the basics https://en.wikipedia.org/wiki/Algebra_over_a_field.
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Any p-form φ may then be expressed in the form

φ =
∑
|I|=p

fIdx
i1 ∧ · · · ∧ dxip

where I ranges over all multi-indices I = (i1, . . . , ip) of length p. In a more condensed and useful fashion,
one can write a p-form as

φ = fIdx
I

where the sum is omitted for brevity.

The notation just introduced here may at seem at odds with that in Carroll, when he defined the exterior
derivative and wedge product. In the notation above, the exterior derivative is

dφ =
∑
|I|=p

dfI ∧ dxi1 ∧ · · · ∧ dxip ;

the wedge product is merely

φ ∧ ψ =
∑
|I|=p

∑
|J|=q

fIdx
I ∧ gJdxJ .

For this problem, you can use either form of notation: with all the indices and weird anti-symmetric brackets
and combinatoric stuff (as used in Carroll) or the local coordinate way, with condensed and sensible notation.
No prizes for guessing which I think is best. Besides, this way is far more “user/GR student friendly”. My
laziness aside, this way of writing differential forms also illuminate the conceptual similarity of the exterior
derivative to other notions of taking derivatives.

That said, if you want a step-by-step guide on how to pass between the different notation, this post is rather
useful:
https://math.stackexchange.com/questions/3185894/how-to-prove-leibniz-rule-for-exterior-derivative-using-abstract-index-notation/
3187424#3187424. Feel free to ask questions about it on astro-discourse or email me if something is unclear.

Additionally, for information about differential forms and whatnot in general – if you have free time you
simply must use on understanding differential geometry – these lecture notes are rather good, https://
spot.colorado.edu/~jnc/lecture1.pdf. If you really have a lack of obtuse maths in your life, and want to
remedy that, I also refer you to this textbook, http://www.math.u-szeged.hu/~stacho/mm/flanders.pdf
(start from chapter III, page 35). For a more mathsey textbook, it’s actually decently written.

(a) With all the preamble stuff out of the way, let’s calculate d(ω ∧ η):

d(ω ∧ η) = d((fdxI) ∧ (gdxJ))

= d(fgdxI ∧ dxJ)
= (gdf + fdg) ∧ dxI ∧ dxJ

= (df ∧ dxI) ∧ (gdxJ) + (−1)p(fdxI) ∧ (dg ∧ dxJ)
= dω ∧ η + (−1)pω ∧ dη

In line 1 I used the fact that a p-form can be expressed as ω = fdxI , as discussed above; in line 2,
note that f, g are merely functions and can be moved in front of the wedge products. Line 3 is an
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application of the chain rule and the fact that dω = d(fdxI) = df ∧ dxI , and line 4 uses the antisym-
metry property of the ordering of forms, i.e. dg ∧ dxI = (−1)pdxI ∧ dg.

(b) Let’s take the “double exterior derivative" of a 0-form f first, since that’s easy to do –

d(df) = d

(
∂f

∂xj
dxj
)

=
∂2f

∂xi∂xj
dxi ∧ dxj

=

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
= 0,

where in line 3 we used the antisymmetry of differential form ordering and to get zero in line 4 we
note that partial derivatives commute.

This result then straightforwardly generalises, using a p-form ωj1...jp = ωJ = ωdxJ :

d(dω) = d

(∑
J

d(ωJ) ∧ dxJ
)

=
∑
J

d(dωJ) ∧ dxJ +
∑
J

p∑
i=1

(−1)pdωJ ∧ dxj1 ∧ ... ∧ dxji ∧ ∧dxjp

= 0

Again we have made use of differential form ordering (note that the partial derivatives form dxji had
been moved to the end) and the fact that partial derivatives commute.

Problem 16. Induced metrics and surface areas.
Let’s start by describing the tangent space. By construction, M is 2-dimensional and therefore, each con-
structed tangent space TpM , at any point p ∈ M , has dimension 2 as well. So we’ll need two basis vectors,
and these are given by the tangent vectors to the surface F (x, y) = z:

∂f

∂x
=

(
1, 0,

∂F

∂x

)
∂f

∂y
=

(
0, 1,

∂F

∂y

)
.

where these derivatives are evaluated at the point p. The tangent vectors are clearly tangent to the surface
M and so describe a tangent space. Since they are linearly independent, each tangent vector in TpM can be
written as a linear combination of those and they span the space.



We can find an expression for the surface area directly from this:

∣∣∣∣∂f∂x × ∂f

∂y

∣∣∣∣ =
√
1 +

(
∂F

∂x

)2

+

(
∂F

∂y

)2

.

(Notice that this is simply “length of the one side times length of the other side = area”, which makes sense,
since we’re multiplying together two basis vectors which span TpM , a 2-dimensional manifold). The area is
then the integral over the domain:

A =

∫
U

√
1 +

(
∂F

∂x

)2

+

(
∂F

∂y

)2

.

There is another way to find the area, as pointed out in the question sheet, by using the notion of the induced
metric (see appendix A in Carroll for details). We can induce a metric in R2 by applying the pull-back of
the metric gµν in R3:

Gab =
∂xµ

∂ya
∂xν

∂yb
gµν

(N.B.: here I’m using Greek script indices to refer to 3-dimensional spatial indices, not to the normal 4-
dimensional spacetime ones. I do this because I want to use Latin script indices for the induced metric,
a 2-dimensional object. But do not make a habit of this unless it is totally clear from context!). Now we
calculate the Jacobian between the two coordinate systems:

∂xµ

∂ya
=

(
1 0 ∂xF
0 1 ∂yF

)
.

This then gives you, recalling that gµν = (1, 1, 1, ), after a page or two of algebra grinding,

Gab =

(
1 + (∂xF )

2 ∂xF∂yF
∂xF∂yF 1 + (∂yF )

2

)
.

The area can then be found, since

A =

∫
U

√
det(Gab) =

∫
U

√
1 +

(
∂F

∂x

)2

+

(
∂F

∂y

)2

.

So, pick your poison. The second way is certainly longer - so much so I didn’t want to type up all the
intermediate steps. However the first way quickly becomes very unwieldy if you don’t have nice vectors for
the cross product. (Again, the important thing is to choose the method with which you have the most fun -
or rather, the least amount of pain).

Incidentally, if we imagine we care about areas in arbitrary dimensions, the pullback method is of course the
way to go, since cross products aren’t defined in dimensions other than 3 or 7.2

2For those so inclined, see Hurwitz’s Theorem (very heavy maths, though).



Problem 17. Topological flatness
We want to find metric which is induced by

ds2 =
1

1− z2
dx2 +

1

1− z2
dy2 +

1− 2z2

(1− z2)
2 dz

2.

A quick way is to simply use the map provided,

x = sin θ cosφ

y = sin θ sinφ

z = cos θ

and the associated differential elements, dx, dy, dz, and substitute these into the above metric. After some
algebra, you find

ds2 = dθ2 + dφ2.

This is actually the Minkowski metric. This means the induced manifold is flat. That is to say, the interior
angles of a triangle sum to 180o.

One can also use the pullback method.

Gab =
∂xµ

∂ya
∂xν

∂yb
gµν ,

∂xµ

∂ya
=

(
cos θ cosφ cos θ sinφ − sin θ
− sin θ sinφ sin θ cosφ 0

)
.

This means, for instance,

G11 =
∂xµ

∂y1
∂xν

∂y1
gµν

=
∂x

∂θ

∂x

∂θ
g11 +

∂y

∂θ

∂y

∂θ
g22 +

∂z

∂θ

∂z

∂θ
g33

= (cos θ cosφ)2
1

1− cos2 θ
+ (cos θ sinφ)2

1

1− cos2 θ
− sin2 θ

1− 2 cos2 θ

(1− cos2 θ)2

=
cos2 θ

sin2 θ
(cos2 φ+ sin2 φ)− 1− 2 cos2 θ

1− cos2 θ

=
cos2 θ

sin2 θ
− 1− 2 cos2 θ

sin2 θ
= 1

The rest I leave to you. But this confirms that the term in front of dθ2 is 1, and eventually you find that

Gab =

(
1 0
0 1

)
.



Problem 18. Induced metric on the torus.
Like before, we can either use the notion of pullbacks or just "plug in" the map provided.

If you want to use pullbacks – the induced metric on T 2 is the pullback of the flat metric in R4. The induced
metric is obtained by matrix multiplication:

(ϕ∗g)µν =
∂xα

∂θµ
∂xβ

∂θν
gαβ

and gives, eventually,

gab =

(
1 0
0 4

)
.

Therefore,

ds2 = θ21 + 4 dθ22.

Alternatively, substitution into the flat line element ds2 = dx21 + dx22 + dx23 + dx24 leads to the same result

ds2 = d (cos (θ1))
2
+ d (sin (θ1))

2
+ d (2 cos (θ2))

2
+ d (2 cos (θ2))

2

= dθ21 + 4 dθ22.

The “volume” is given by

VT 2 =

∫
dθ1dθ2

√
det(gab) = 8π2.

The determinant is 4 and each angle ranges from 0 to 2π.


