FYS4160 - General Relativity
 Problem Set 7 Solutions
 Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.
If you spot any typos, mistakes, don't hesitate to contact me at halvor.melkild@fys.uio.no. For any physics related question please use the forum at astro-discourse.uio.no.

The idea of these solutions is to give you a sense of what a 'model' answer should be, and they also elaborate on some discussions from the help sessions. I try to make them "pedagogical": i.e. hopefully comprehensive and most steps should be explained.

Problem 23. Curved d'Alembertians.

We start with the definition of \square in an arbitrary curved spacetime:

$$
\square=g_{\mu \nu} \nabla_{\mu} \nabla_{\nu}
$$

Here's a cute little trick: the Christoffel symbol can be written as ${ }^{1}$

$$
\Gamma_{\mu \nu}^{\mu}=\frac{1}{\sqrt{g}} \partial_{\nu}(\sqrt{g})
$$

The divergence of a vector field can therefore be written as

$$
\nabla_{\mu} V^{\mu}=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} V^{\mu}\right)
$$

Back to our question: note that f is a scalar test function, and therefore the quantity $\nabla^{\mu} f$ is a vector field. Now, we need to put them together,

$$
\begin{aligned}
& \square f=g_{\mu \nu} \nabla_{\mu} \nabla_{\nu} f \\
& \square f=\nabla_{\mu} \nabla^{\mu} f \\
& \square f=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} \nabla^{\mu} f\right) .
\end{aligned}
$$

Problem 24. Fluid equations.

(a) Done step-by-step in Carroll, pg. 35-37, so I won't repeat the details. (P.S. I know I say this occasionally as a solution, but it isn't a valid answer in an exam lol).
(b) Here we consider the derivation of the Navier-Stokes equations ${ }^{2}$. This can be done by adding a term $\epsilon^{\mu \nu}$ to the energy-momentum tensor:

[^0]$$
T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}+p \eta^{\mu \nu}+\epsilon^{\mu \nu}
$$

Let's think carefully about what the components of the energy-momentum tensor actually represent. Looking at our handy diagram below, we can see what terms actually correspond to shear stress: the off-diagonal, spatial components. Therefore $\epsilon^{\mu \nu} \neq 0$ if $\epsilon^{\mu \nu}=\epsilon^{j k}$ and $j \neq k$.

Figure 1: The breakdown of $T^{\mu \nu}$. (Taken once again from Wikipedia; if it ain't broke, don't fix it).

Recall that to derive the Euler equation, we considered the divergence of the energy-momentum tensor projected orthogonally to the fluid velocity.

$$
P_{\nu}^{\sigma} \partial_{\mu} T^{\mu \nu}=0
$$

The derivation follows the same procedure as for part (a), with the exception of an extra shear term:

$$
\begin{aligned}
\left(\delta^{\sigma}{ }_{\nu}+u^{\sigma} u_{\nu}\right) \partial_{\mu} \epsilon^{\mu \nu} & =\delta^{\sigma}{ }_{\nu} \partial_{\mu} \epsilon^{\mu \nu}+u^{\sigma} u_{\nu} \partial_{\mu} \epsilon^{\mu \nu} \\
& =\partial_{\mu} \epsilon^{\mu \sigma}+u^{\sigma} u_{\nu} \partial_{\mu} \epsilon^{\mu \nu}
\end{aligned}
$$

As part of the Euler derivation, the choice would be made to set $\sigma=j$, and so

$$
\left(\delta_{\nu}^{\sigma}+u^{\sigma} u_{\nu}\right) \partial_{\mu} \epsilon^{\mu \nu}=\partial_{\mu} \epsilon^{\mu j}+u^{j} u_{\nu} \partial_{\mu} \epsilon^{\mu \nu}
$$

We now take the non-relativistic limit (eq. 1.119 in Carroll), and sum:

$$
\begin{aligned}
\partial_{\mu} \epsilon^{\mu j}+u^{j} u_{\nu} \partial_{\mu} \epsilon^{\mu \nu} & =\partial_{0} \epsilon^{0 j}+\partial_{i} \epsilon^{i j}+v^{j} u_{0} \partial_{\mu} \epsilon^{\mu 0}+v^{j} v_{i} \partial_{\mu} \epsilon^{\mu i} \\
& =\partial_{i} \epsilon^{i j}+v^{j} v_{i} \partial_{k} \epsilon^{k i} \\
& =\partial_{i} \epsilon^{i j}+\mathcal{O}\left(v^{2}\right)
\end{aligned}
$$

where any shear terms with a 0 component vanish because those components of $\epsilon^{\mu \nu}$ are zero. In the non-relativistic limit, also, velocities are small, which is why we neglect v^{2} terms. If we define $\epsilon=-\tau$, the shear contribution to the now modified Euler equation is therefore

$$
\rho\left(\partial_{t} \mathbf{v}+(\nabla \cdot \mathbf{v})\right)=-\nabla p+\nabla \cdot \tau
$$

(in vector notation). The continuity equation does not get modified because this kind of shear, viscous stress, does not act parallel (or along) the fluid velocity.

Appendix: derivation of the Christoffel in terms of the metric determinant.

For some generic matrix A, we have Jacobi's formula,:

$$
\frac{d}{d t} \log \operatorname{det}(A(t))=\operatorname{tr}\left(A^{-1} \frac{d}{d t} A(t)\right)
$$

Differentiation of the LHS gives

$$
\frac{1}{\operatorname{det} A(t)} \frac{d}{d t}(\operatorname{det}(A(t)))=\operatorname{tr}\left(A^{-1} \frac{d}{d t} A(t)\right)
$$

Let's consider a 4 x 4 matric $g_{\mu \nu}$ and use the shorthand for its determinant g; we differentiate

$$
\partial_{v} g=(g) \operatorname{tr}\left(g^{-1} \partial_{v} g\right)=(g) g^{\mu \lambda} \partial_{\nu} g_{\mu \lambda}
$$

Hence, the derivative of \sqrt{g} would then be

$$
\begin{aligned}
\partial_{v} \sqrt{g} & =\frac{1}{2} g^{-1 / 2} \partial_{\nu} g \\
& =\frac{1}{2} g^{-1 / 2} g g^{\mu \lambda} \partial_{\nu} g_{\mu \lambda} \\
& =\frac{1}{2} \sqrt{g} g^{\mu \lambda} \partial_{\nu} g_{\mu \lambda}
\end{aligned}
$$

Dividing by \sqrt{g} gives

$$
\Gamma_{\mu \nu}^{\mu}=\frac{1}{2} g^{\mu \lambda} \partial_{\nu} g_{\mu \lambda}
$$

the canonical Christoffel. (Compare to a contraction of equation 3.1 in Carroll, noting here that two indices are contracted).

Hence we can say that

$$
\Gamma_{\mu \nu}^{\mu}=\frac{1}{\sqrt{\operatorname{det} g}} \partial_{\nu}(\sqrt{\operatorname{det} g})
$$

[^0]: ${ }^{1}$ I derive this at the end of the solutions, for those who are interested.
 ${ }^{2}$ This is entirely unrelated to physics, but I first heard of the Navier-Stokes equations in the book Fashionable Nonsense by Alan Sokal and Jean Bricmont. The Navier-Stokes equations come up because of a postmodern philosopher, Luce Irigaray, who claimed that they remain unsolved because they concern fluids and flow: these concepts are "feminine", in Irigaray's view, and the mostly male community of physicists are thus ill-equipped to understand such physics. Does the fact that the physics community is mostly male - now, in the 2020 s , let alone the 90 s - present significant challenges for women and impede the progress of physics as a whole? Absolutely. Does it mean that certain aspects of physics itself are gendered? I'll leave that as an exercise to the reader.

