
FYS4160 - General Relativity
Problem Set 9 Solutions

Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.

If you spot any typos, mistakes, don’t hesitate to contact me at halvor.melkild@fys.uio.no. For any physics
related question please use the forum at astro-discourse.uio.no.

The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical”: i.e. hopefully comprehensive
and most steps should be explained.

Problem 29. A heckin’ zoom in Schwarzschild geometry.

We refer first to the equation just above eq. (6.15) in Carroll:

aµ = uσ∇σu
µ,

where uµ is the 4-velocity, dxµ/dτ . The 4-acceleration can be calculated,

aµ = uσ∇σu
µ

= uσ∂σu
µ + uσΓµ

σρu
ρ.

Since the observer is stationary, the curve uµ is constant. Hence the first term is zero. Additionally, only u0

is nonzero - being stationary implies the 3-velocity is zero. We have left

aµ = (u0)2Γµ
00.

We can calculate u0 by recalling the normalisation condition for the 4-velocity:

uµuµ = −1

(u0)2g00 = −1

=⇒ u0 =
1√
−g00

.

From the Schwarzschild metric, g00 = −(1 − rs/r). We can also use eq. (5.52) in Carroll to find the only
nonzero Christoffel with subscript 00, and it’s Γ1

00. The 4-acceleration is therefore

aµ =
1(

1− rs
r

)Γµ
00

a1 =
1(

1− rs
r

) rs
2r2

(
1− rs

r

)
a1 =

rs
2r2

.

We identify the index 1 with r, of course, and hence the radial acceleration is

ar =
rs
2r2

=
GM

r2
.

This is exactly the same as the Newtonian result! However, the question wants the acceleration the observer
experiences, i.e. in her frame. We need then the proper acceleration, which is given by the magnitude of
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the 3-acceleration, α =
√
ajaj . Since only the r component is nonzero and we contract indices using the

Schwarzschild metric, we have α =
√
grra

r:

α =
GM

r2
1√

1− 2GM
r

.

This approaches the Newtonian result far away from the black hole, at r ≫ rs. As r → rs, the acceleration
diverges – it would take an infinite force to accelerate away from the horizon at r = rs.

Problem 30. Eddington-Finkelstein lightcones.

Consider the Schwarzschild metric in the (r,t)-plane,

ds2 = −f(r)dt2 +
1

f(r)
dr2,

where I’ve introduced the notational shorthand f(r) = 1 − rs/r. Null geodesics follow trajectories with
ds2 = 0. This means our Schwarzschild metric becomes

dt

dr
= ± 1

f(r)
.

The positive solution refers to outgoing geodesics (away from the black hole); the negative solution to
ingoing ones. We can integrate this to solve for t. Doing so, and introducing the tortoise coordinate,
r⋆ = r + rs ln(r/rs − 1), we find,

t = ±r⋆ + const.

where we also have a constant of integration. In Eddington-Finkelstein coordinates, v = t+r⋆ and u = t−r⋆.
Hence, we deduce that u = const. characterises the outgoing null geodesics and v = const. characterises the
ingoing null geodesics. Refer to Carroll, figs. 5.7, 5.10, 5.11, for a discussion of the light cones. Notably, the
lightcones don’t close up in EF coordinates.

Problem 31. Dropping a beacon in a black hole.

Problem 5.5 in Carroll reads:

Consider a comoving observer sitting at constant spatial coordinates (r∗, θ∗, ϕ∗), around a Schwarzschild black
hole of mass M . The observer drops a beacon into the black hole (straight down, along a radial trajectory).
The beacon emits radiation at a constant wavelength λem (in the beacon rest frame).

(a) Calculate the coordinate speed dr/dt of the beacon, as a function of r.
(b) Calculate the proper speed of the beacon. That is, imagine there is a comoving observer at fixed r, with a
locally inertial ccordinate system set up as the beacon passes by, and calculate the speed as measured by the
comoving observer. What is it at r = 2GM?
(c) Calculate the wavelength λobs , measured by the observer at r∗, as a function of the radius rem at which
the radiation was emitted.
(d) Calculate the time tobs at which a beam emitted by the beacon at radius rem will be observed at r∗.
(e) Show that at late times, the redshift grows exponentially: λobs/λem ∝ etobs/T . Give an expression for the
time constant T in terms of the black hole mass M .

(a) We want the coordinate speed, dr/dt, of the beacon in the observer frame. To do so, we need to find
a way to relate the proper speed to the coordinate speed. This is achieved through the chain rule,

dr

dt
=

dr

dτ

dτ

dt
.



We can find dr/dτ and dt/dτ using the line element, but not independently (we want something
like dt/dτ = (stuff), without the other variable involved). To find them independently, we make use
of conserved quantities. Recall that the energy associated with the Killing vector in Schwarzschild
coordinates is

E = f(r)
dt

dτ
(Carroll eq. (5.61)).

This Killing vector is timelike; we can get the line element into this form by considering the point
r = r⋆. Recall the beacon starts at this point and then emits light at rem. At r = r⋆, dr/dτ = 0, since
the beacon is stationary just as its thrown. Hence the we have

dt

dτ
|r=r⋆ =

1√
f(r⋆)

.

We identify this as the energy, E(r⋆) =
√

f(r⋆). However, this quantity is conserved, so is true for all
values of r;

E = f(r)
dt

dτ
=

√
f(r⋆).

This gives us dt/dτ . Now we can write the line element as

dτ2 = −ds2 = f(r)dt2 − 1

f(r)
dr2.

Dividing through by dτ2,

1 = f(r)

(
dt

dτ

)2

− 1

f(r)

(
dr

dτ

)2

1 =
E2

f (r)
− 1

f(r)

(
dr

dτ

)2

1 =
f(r⋆)

f (r)
− 1

f(r)

(
dr

dτ

)2

.

Solving for the dr/dτ we get

dr

dτ
= ±

√
rs
r

− rs
r⋆

.

We can now apply the chain rule from the very beginning to get

dr

dt
= −f(r)

√
rs(r⋆ − r)

r(r⋆ − rs)
.

(b) A nice bit of reasoning here: the relation between proper and coordinate acceleration in the previous
problem was shown to be the component scaled by the square of the metric factor. Since the x0 = dt
component is scaled by

√
−f(r) and the x1 = dr component is scaled by 1/

√
f(r), the speed (i.e. ratio

of dr/dt) gives a scaling of −1/f(r) which exactly cancels the factor we have from part (a). Hence the
proper speed is ∣∣∣∣drobsdtobs

∣∣∣∣ =
√

rs(r⋆ − r)

r(r⋆ − rs)
.



This is of course the coordinate speed in terms of the observer’s proper time. Note that beacon starts
at r⋆, and so the speed becomes c = 1 at the horizon - while the coordinate speed vanishes.

(c) We use equation (5.100): the frequency of a photon travelling on a null geodesic xµ(λ), as observed
by an observer travelling with 4 -velocity uµ is

ω = −gµνu
µ dx

ν

dλγ
.

Let’s first find the frequency in the frame of the beacon, when it is at r = rem. It follows a radial path,
and therefore its 4 -velocity is uµ

b = (dt/dτb, dr/dτb, 0, 0) . Hence,

ωem = −gµνu
µ
b

dxν

dλγ

= (1− rs/rem)
dt

dτb

dt

dλγ
− (1− rs/r)

−1 dr

dτb

dr

dλγ

= (1− rs/rem)
dt

dτb

dt

dλγ
− dr

dτb

dt

dλγ

=
dt

dλγ

(√
1− rs/r∗ +

√
rs/rem − rs/r∗

)
=

Eγ

1− rs/rem

(√
1− rs/r∗ +

√
rs/rem − rs/r∗

)
.

A lot happened in each line, let’s go through it bit by bit. Firstly, Eγ = (1− rs/r) dt/dλγ is a constant
of motion. In line 3 we used the fact that, for photons, which are massless,

dr

dλγ
=

dr

dt

dt

dλγ
= (1− rs/r)

dt

dλγ

(compare to the answer for part (a), which is for a massive object – and also understand how I got
this relation – it follows from ds2 = 0 for photons). In line 4 we used

dr

dτ
= ±

√
rs
r

− rs
r⋆

.

The comoving observer is at rest at r = r∗,, as known from the question, so the spatial components of
their 4-velocity uµ

obs vanish. With the time component dt/dτobs =
√

f(r), we find that they observe
the photon frequency as

ωobs = −gµνu
µ
obs

dxν

dλγ

= (1− rs/r∗) (1− rs/r∗)
−1/2 dt

dλγ

=
Eγ√

1− rs/r∗

Therefore, using ω = 2π/λ, we find

λobs

λem
=

ωem

ωobs
=

√
1− rs/r∗

1− rs/rem

(√
1− rs/r∗ +

√
rs/rem − rs/r∗

)
.



(d) We need the time for the beacon to reach its emitting point and then the time the light takes to reach
the observer from the emitting point. The coordinate time required for the beacon to reach r = rem
from r⋆ can be obtained by integrating the answer to part (a):

t1 = −
∫ rem

r∗

(1− rs/r)
−1

√
r (r∗ − rs)

rs (r∗ − r)
dr

This integral is quite nontrivial, so I’ll leave it in this form. The coordinate time taken by the photon
to reach the observer is found by integrating the coordinate time of the observer in their frame:

t2 =

∫ r∗

rem

(1− rs/r)
−1

dr = rs

∫ r∗/rs

rem/rs

xdx

x− 1
= rs

∫ r∗/rs

rem/rs

[
1 +

1

x− 1

]
dx

finally yielding

t2 = r∗ − rem + rs ln

(
r∗ − rs
rem − rs

)

The total coordinate time when the photon is observed is tobs = t1 + t2.

(e) At late times, the infalling beacon approaches the black hole closely (rem → rs) and the answer to
part (c) becomes

λobs

λem
−→ 2

1− rs/r∗
1− rs/rem

∝ r∗ − rs
rem − rs

Note that in this limit t1 → t2, and the log term in t2 dominates, so that the time of observation tobs
becomes

tobs → 2t2 ≈ 2rs ln
r∗ − rs
rem − rs

.

Hence, λobs /λem ∝ etobs/T , where T = 2rs = 4GM.


