FYS4160 - General Relativity
 Problem Set 10 Solutions
 Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.
If you spot any typos, mistakes, don't hesitate to contact me at halvor.melkild@fys.uio.no. For any physics related question please use the forum at astro-discourse.uio.no.
The idea of these solutions is to give you a sense of what a 'model' answer should be, and they also elaborate on some discussions from the help sessions. I try to make them "pedagogical": i.e. hopefully comprehensive and most steps should be explained.

Problem 32. Particle spiralling into a black hole.

Problem 5.3 in Carroll reads:
Consider a particle (not necessarily on a geodesic) that has fallen inside the event horizon, $r<2 G M$. Use the ordinary Schwarzschild coordinates (t, r, θ, ϕ). Show that the radial coordinate must decrease at a minimum rate given by

$$
\left|\frac{d r}{d \tau}\right| \geq \sqrt{\frac{2 G M}{r}-1}
$$

Calculate the maximum lifetime for a particle along a trajectory from $r=2 G M$ to $r=0$. Express this in seconds for a black hole with mass measured in solar masses. Show that this maximum proper time is achieved by falling freely with $E \rightarrow 0$.

We start with calculating the rate of radial infall. Inside r_{s}, we have $1-r_{s} / r<0$. We recall the 4 -velocity normalisation

$$
g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=-1
$$

Neglecting angular coordinates, it then follows that

$$
1=\left(r_{s} / r-1\right)^{-1}\left(\frac{d r}{d \tau}\right)^{2}-\left(r_{s} / r-1\right)\left(\frac{d t}{d \tau}\right)^{2}
$$

The positive term here must be greater than or equal to 1 ; and so,

$$
\left(r_{s} / r-1\right)^{-1}\left(\frac{d r}{d \tau}\right)^{2} \geq 1 \quad \Longrightarrow \quad\left|\frac{d r}{d \tau}\right| \geq \sqrt{\left(r_{s} / r-1\right)}
$$

Now that we have shown this relation, we want to calculate the maximum lifetime of a particle that starts at the Schwarzschild horizon and heads towards the singularity. Since

$$
\left|\frac{d r}{d \tau}\right| \geq \sqrt{\frac{2 G M}{r}-1}
$$

maximal proper time would be achieved when the equality holds. This is because we want $d r$ to be as small as possible. Integrating this, we get

$$
\tau_{\max }=-\int_{r_{s}}^{0} \frac{d r}{\sqrt{r_{s} / r-1}}=2 r_{s} \int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=2 r_{s} \int_{0}^{\pi / 2} \cos ^{2}(y) d y=\frac{\pi}{2} r_{s}=\pi G M
$$

where we have performed integration by substitution, namely with $x=\sqrt{r_{s} / r-1}$ and $y=\arctan x$. One could alternatively use Wolfram alpha or your favourtie integral solver.

Next, we express this time in terms of seconds and solar masses. Check the dimensions of $\pi G M$ in SI units: $[G M]=m^{3} / s^{2}$, so restoring the factors c in the expression to get just seconds, we have

$$
\tau_{\max }=\pi G M / c^{3} \sim 4.9 \pi \frac{M}{M_{\odot}} \mu \mathrm{s}
$$

Finally, we now consider free fall along a geodesic. We know that $E=\left(1-r_{s} / r\right) d t / d \tau$ is constant. With the proper time defined by $d \tau^{2}=-d s^{2}$, we find

$$
\begin{aligned}
d \tau^{2} & =-\left(r_{s} / r-1\right) d t^{2}+\left(r_{s} / r-1\right)^{-1} d r^{2} \\
& =-E^{2}\left(r_{s} / r-1\right)^{-1} d t^{2}+\left(r_{s} / r-1\right)^{-1} d r^{2}
\end{aligned}
$$

Since the term with E subtracts off a quantity, the maximal proper time - i.e. making the LHS the biggest - is achieved when $E=0$.

Problem 33. A deleted Interstellar scene.

Before we begin, it should be noted that this question is very hard for very unusual reasons: the types of algebra guessing and classical mechanics reasoning are not at all obvious, although the maths isn't "hard". Don't be discouraged by finding this problem challenging: it very much is!
(a) To escape non-radially, they'll have to fight rotational motion too. This will require more force - and hence the ejection of more mass - to escape. It is thus the more prudent course of action to escape radially.
As Carroll says, "Together the conserved quantities E and L provide a convenient way to understand the orbits of particles in the Schwarzschild geometry." Indeed. Eq. (5.64) in Carroll reads

$$
-E^{2}+\left(\frac{d r}{d \tau}\right)^{2}+\left(1-\frac{r_{s}}{r}\right)\left(\frac{L^{2}}{r^{2}}+\epsilon\right)=0
$$

In particular, for radial motion, $L=0$ (eq. 5.62). This gives

$$
-E^{2}+\left(\frac{d r}{d \tau}\right)^{2}+\left(1-\frac{r_{s}}{r}\right) \epsilon=0
$$

At $r \rightarrow \infty, E=1$. It must always be this value at any r, since it is a conserved quantity. Additionally, $\epsilon=1$ for massive particles. Hence at $r=R_{\text {ship }}$,

$$
\left(\frac{d r}{d \tau}\right)^{2}=\frac{r_{s}}{R_{\text {ship }}}
$$

The minimal 4-velocity is thus

$$
u^{\alpha}=\left(\left(1-\frac{r_{s}}{R_{\text {ship }}}\right)^{-1}, \sqrt{\frac{r_{s}}{R_{\text {ship }}}}, 0,0\right) .
$$

where $d t / d \tau$ is from eq. (5.61).
(b) Quite a bit of setup is required for this one. We need to some symbols with which to denote stuff. Before the throw, we have the rest mass $m_{\text {rest }}$ and 4 -velocity $u_{\text {rest }}^{\alpha}$. After the throw, we have two separated fragments, the escaping part and the portion that is ejected: $m_{\mathrm{esc}}, m_{\mathrm{ej}}, u_{\mathrm{esc}}, u_{\mathrm{ej}}$. We're also going to define $r_{s} / R_{\text {ship }} \equiv \xi$. The rest and escape velocities come from the answer to part (a), and are

$$
\begin{aligned}
& u_{\mathrm{rest}}^{\alpha}=\left((1-\xi)^{-1}, 0,0,0\right) \\
& u_{\mathrm{esc}}^{\alpha}=\left((1-\xi)^{-1}, \sqrt{\xi}, 0,0\right)
\end{aligned}
$$

Let's return to good (bad) old classical mechanics - 3 -momentum is conserved, so $p_{i}^{j}=p_{f}^{j}$ (the upstairs indices are the indices; downstairs just means 'initial' and 'final'). Remember, 3-momentum, not 4-momentum! This gives

$$
\begin{aligned}
0 & =m_{\mathrm{esc}} u_{\mathrm{esc}}^{j}+m_{\mathrm{ej}} u_{\mathrm{ej}}^{j} \\
0 & =m_{\mathrm{esc}} \sqrt{\xi}+m_{\mathrm{ej}} u_{\mathrm{ej}}^{r} \\
u_{\mathrm{ej}}^{r} & =-\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}} \sqrt{\xi} .
\end{aligned}
$$

This gives us the radial component of the ejected 4 -velocity. We use the normalisation of the 4 -velocity to find the time component, u_{ej}^{t} :

$$
\begin{aligned}
g_{\alpha \beta} u^{\alpha} u^{\beta} & =-1 \\
-(1-\xi)\left(u_{\mathrm{ej}}^{t}\right)^{2}+-(1-\xi)^{-1}\left(u_{\mathrm{ej}}^{r}\right)^{2} & =-1 \\
\left(u_{\mathrm{ej}}^{t}\right)^{2} & =(1-\xi)^{-2}\left((1-\xi)+\left(u_{\mathrm{ej}}^{r}\right)^{2}\right) \\
\left(u_{\mathrm{ej}}^{t}\right)^{2} & =(1-\xi)^{-2}\left((1-\xi)+\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}}\right)^{2} \xi\right) \\
u_{\mathrm{ej}}^{t} & =(1-\xi)^{-1}\left(1-\xi\left(1-\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}}\right)^{2}\right)\right)^{1 / 2} .
\end{aligned}
$$

In line 3 we took terms to the RHS and took out a common factor of $(1-\xi)^{-2}$; in line 4 we used our expression for u_{ej}^{r}; in line 5 we massaged some terms and took the square root. We have the ejection 4 -velocity as

$$
u_{\mathrm{ej}}^{\alpha}=\left((1-\xi)^{-1}\left(1-\xi\left(1-\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}}\right)^{2}\right)\right)^{1 / 2}, \frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}} \sqrt{\xi}, 0,0\right)
$$

Multiplying this by the ejected mass will give you the ejected 4-momentum.
We now consider the energy before ejection. The energy is the time component of the 4 -momentum, and is given by $p_{\text {rest }}^{t}=m_{\text {rest }}(1-\xi)^{-1 / 2}$, where $m_{\text {rest }}$ is the total mass (or rest mass). Not to get lost here: we want the biggest fraction of $m_{\text {esc }} / m_{\text {rest }}$. After ejection we have

$$
\begin{aligned}
m_{\mathrm{rest}}(1-\xi)^{-1 / 2} & =m_{\mathrm{esc}} u_{\mathrm{esc}}^{t}+m_{\mathrm{ej}} u_{\mathrm{ej}}^{t} \\
m_{\mathrm{rest}}(1-\xi)^{-1 / 2} & =m_{\mathrm{esc}}(1-\xi)^{-1}+m_{\mathrm{ej}}(1-\xi)^{-1}\left(1-\xi\left(1-\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}}\right)^{2}\right)\right)^{1 / 2} \\
(1-\xi)^{1 / 2} & =\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{rest}}}\right)+\left(\frac{m_{\mathrm{ej}}}{m_{\mathrm{rest}}}\right)\left(1-\xi\left(1-\left(\frac{m_{\mathrm{esc}}}{m_{\mathrm{ej}}}\right)^{2}\right)\right)^{1 / 2}
\end{aligned}
$$

Note that $m_{\text {rest }} \neq m_{\mathrm{ej}}+m_{\mathrm{ej}}$ - the 4-momentum is conserved but the total rest mass is not. For fixed $m_{\text {rest }}$ and $\xi, m_{\text {esc }}$ is just a function of $m_{e j}$, with $m_{\text {ej }} \leq m_{\text {rest }}$. If you massage the alegbra, you can actually isolate a term of $m_{\text {esc }}^{2}=\ldots$. The larger root is,

$$
m_{\mathrm{esc}}=\frac{\tilde{M}-\xi m_{\mathrm{ej}}+\sqrt{\xi(1-\xi) \tilde{M}^{2}+\left(m_{\mathrm{ej}}-\xi \tilde{M}\right)^{2}}}{1-\xi} \quad \text { where } \tilde{M} \equiv(1-\xi)^{1 / 2} m_{\mathrm{rest}}
$$

We now see manifestly that m_{esc} is maximised for $m_{\mathrm{ej}}=0$. In the limit, $m_{\mathrm{ej}} \rightarrow 0$, the above expression becomes,

$$
\begin{aligned}
(1-\xi)^{1 / 2} & =\frac{m_{\mathrm{esc}}}{m_{\mathrm{tot}}}+\xi^{1 / 2} \frac{m_{\mathrm{esc}}}{m_{\mathrm{tot}}} \\
f & =\frac{m_{\mathrm{esc}}}{m_{\mathrm{tot}}}=\frac{(1-\xi)^{1 / 2}}{1+\xi^{1 / 2}}
\end{aligned}
$$

which means spaceship cannot escape at $R_{\text {ship }}=r_{s}$, since at this value the maximum faction of escaped ship is zero.

Problem 34. Black hole surface areas.

(a) The induced metric at the Schwarzschild surface is that for which $d t$ and $d r$ are constant. This means the metric is

$$
d s^{2}=r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

Note that $r=r_{s}$. The surface area is then given by (cf. similar problems in problem set 5)

$$
\begin{aligned}
A_{\text {Schwarz }} & =\int_{U} \sqrt{\operatorname{det}\left(G_{a b}\right)} \\
& =\int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi\left[r^{2} \sin \theta\right] \\
& =4 \pi^{2} r_{s}^{2}
\end{aligned}
$$

This result could have been obtained instantly by noting that a Schwarzschild black hole is a sphere, which therefore has a surface area of $A=4 \pi^{2} R^{2}$. (And following the hint, null surfaces are in fact coordinate invariant).
(b) The induced Kerr metric is also found when $d t$ and $d r$ are constant; we have two radius choices, however. Therefore, for $d t=$ const and $r=r_{ \pm}$, the metric is

$$
d s^{2}=\left(r_{ \pm}^{2}+a^{2} \cos ^{2} \theta\right) \mathrm{d} \theta^{2}+\left(\frac{4 m^{2} r_{ \pm}^{2}}{r_{ \pm}^{2}+a^{2} \cos ^{2} \theta}\right) \sin ^{2} \theta \mathrm{~d} \phi^{2}
$$

or equivalently

$$
d s^{2}=\left(r_{ \pm}^{2}+a^{2} \cos ^{2} \theta\right) \mathrm{d} \theta^{2}+\left(\frac{\left[r_{ \pm}^{2}+a^{2}\right]^{2}}{r_{ \pm}^{2}+a^{2} \cos ^{2} \theta}\right) \sin ^{2} \theta \mathrm{~d} \phi^{2}
$$

While the horizons are topologically spherical, they are emphatically not geometrically spherical (fig. 6.7, Carroll) - which is why you can't use the same trick as in part (a). The area of the horizons is calculated straightforwardly

$$
A_{\mathrm{Kerr}}^{ \pm}=4 \pi\left(r_{ \pm}^{2}+a^{2}\right)
$$

This reduces to the Schwarzschild area as $a \rightarrow 0$, since then $r_{+}=r_{-}$(see eq. 6.82 in Carroll).

