
FYS4160 - General Relativity
Problem Set 11 Solutions

Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.

If you spot any typos, mistakes, don’t hesitate to contact me at halvor.melkild@fys.uio.no. For any physics
related question please use the forum at astro-discourse.uio.no.

The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical”: i.e. hopefully comprehensive
and most steps should be explained.

Problem 35. Linearised gravity.

(a) Consider a global Lorentz transformation of gµν ,

g′αβ = Λµ
αΛ

ν
β gµν = Λµ

αΛ
ν
β(ηµν + hµν).

ηµν is invariant by definition, so we have

g′αβ = η′µν + Λµ
αΛ

ν
βhµν =⇒ g′αβ − η′αβ = h′

αβ = Λµ
αΛ

ν
βhµν

and we see that hµν transforms as a rank-2 tensor on a Minkowski background.
Since the Lagrangian is constructed from fully contracted objects, it is Lorentz invariant (it’s a scalar
boi) and thus the theory is Lorentz invariant on flat spacetime.

(b) Equation (7.9) is

L =
1

2

[
(∂µh

µv) (∂νh)− (∂µh
ρσ) (∂ρh

µ
σ) +

1

2
ηµν (∂µh

ρσ) (∂νhρσ)−
1

2
ηµν (∂µh) (∂νh)

]
.

This is the Lagrangian for the matter-free part. We can take out a common factor of ηµν and write
this as

L =
1

2
ηµν

[
(∂ρh

ρσ) (∂σhµν)− (∂µh
ρσ) (∂ρhνσ) +

1

2
(∂µh

ρσ) (∂νhρσ)−
1

2
ηαβηρσ (∂µh

ρσ) (∂νhαβ)

]
.

The action is given by S =
∫
d4xL. We vary this w.r.t. hρσ to obtain

δS =
1

2
ηµν

∫
d4x [(∂ρδh

ρσ) (∂σhµν) + (∂ρh
ρσ) (∂σδhµν)− (∂µδh

ρσ) (∂ρhνσ)− (∂µh
ρσ) (∂ρδhνσ)

+
1

2
(∂µδh

ρσ) (∂νhρσ) +
1

2
(∂µh

ρσ) (∂νδhρσ)−
1

2
ηαβηρσ (∂µδh

ρσ) (∂νhαβ)−
1

2
ηαβηρσ (∂µh

ρσ) (∂νδhαβ)

]
= −1

2
ηµν

∫
d4x [(δhρσ) (∂ρ∂σhµν) + (∂σ∂ρh

ρσ) (δhµν)− (δhρσ) (∂µ∂ρhνσ)− (∂ρ∂µh
ρσ) (δhνσ)

+ (δhρσ) (∂µ∂νhρσ)− ηαβηρσ (δh
ρσ) (∂µ∂νhαβ)

]
.

This can look overwhelming, so let’s break in down. In the first line 1 used the product rule and
made sure to vary every metric term that appears. The second line follows from integration by parts.
Recall: udv = uv −

∫
vdu. We assume the boundary term always vanishes at infinity, so we really

have udv = −
∫
vdu. The amounts to swapping which term has the derivative and adding in a minus

sign. For example, (∂ρhρσ) (∂σδhµν) can be written as ∂ρh
ρσ∂σδhµν = −∂σ∂ρh

ρσδhµν . I have taken
out the overall minus sign in the second line, since I have applied IBP to every term.
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We chose our variation parameter to be δhσρ. It could have been hρσ or hµν ; the important thing is
that you’re consistent. I chose δhσρ since most terms already have a factor of hσρ - it saves us some
work.
Since we chose δhσρ, we want to write the variation as a common factor of that. This means we have
to rewrite the 2nd and 4th term. Consider the 2nd term as an example. First we swap indices,

ηµν∂σ∂ρh
ρσδhµν = ηρσ∂ν∂µh

µνδhρσ.

Next we note that ηρσδhρσ = δh = ηρσδh
ρσ. This means the 2nd term becomes

2nd term = ηρσ∂ν∂µh
µνδhρσ,

which is in terms of δhρσ, as desired. The same can be done to the 4th term, and after bringing the
−ηµν back into the whole expression, the variation becomes

δS =
1

2

∫
d4x

(
−∂ρ∂σh− ηρσ∂µ∂νh

µν + ∂µ∂ρh
µ
σ + ∂µ∂σh

µ
ρ −□hρσ + ηρσ□h

)
δhρσ

The integrand must vanish, and we also note that, from equation (7.8), we have the definition of the
linear Einstein tensor. Therefore,

Gρσ = 0.

This is the vacuum Einstein equation, to first order. To add in the matter part, it’s actually identical
to the derivation of the full Einstein equations (cf. chapter 4 in Carroll). Write the action as

S =
1

16πG
SH + SM

and we then get
G(0)

µν = 8πGTµν .

Problem 36. Gauge invariance in linearised gravity.

Let’s do the actual calculations first before discussing what they really mean. We decompose the perturbation
as so (7.16):

h00 = −2Φ
h0i = wi

hij = 2sij − 2Ψδij ,

where Ψ encodes the trace of hij , and sij is traceless (7.17):

Ψ = −1

6
δijhij

sij =
1

2

(
hij −

1

3
δklhklδij

)
.

Let’s see how this decomposition changes under the gauge transformation given by hµν → hµν+ ∂µξν+∂νξµ.
We first have

h00 → h00 + ∂0ξ0 + ∂0ξ0

−2Φ → −2Φ + 2∂0ξ0

Φ → Φ+ ∂0ξ
0.



where the sign change in the last line for ξ came from contracting with the metric component η00 = −1.
Next we have

h0i → h0i + ∂0ξi + ∂iξ0

wi → wi + ∂0ξi + ∂iξ0

wi → wi + ∂0ξ
i − ∂iξ

0.

We compute the spatial trace of hi
i = h

δijhij → δijhij + δij∂iξj + δij∂jξi

δijhij → δijhij + 2∂iξi

−6Ψ → −6Ψ + 2∂iξ
i

Ψ → Ψ− 1

3
∂iξ

i.

Finally, the traceless part of hij :(
hij −

1

3
δklhklδij

)
→

(
hij −

1

3
δklhklδij

)
+ ∂iξj −

1

3
δkl∂kξlδij + ∂jξi −

1

3
δkl∂lξkδij

2sij → 2sij + 2∂(iξj) −
1

3
δkl∂kξlδij −

1

3
δkl∂lξkδij

2sij → 2sij + 2∂(iξj) −
1

6
∂kξkδij

sij → sij + ∂(iξj) −
1

3
∂kξ

kδij .

We have shown equation (7.33). Now, we can discuss gauge invariance. Carroll spells this out in more detail
in section 7.1, but the essentials are this:

Consider two manifolds that are equipped with different metrics: (flat) background spacetime Mb and
(curved) physical spacetime Mp. The metric gµν on the physical spacetime obeys Einstein’s equations and we
use a diffeomorphism ϕ to pull this metric back to flat spacetime (i.e. to move between the two spacetimes).
We define the perturbation hµν to be the difference between the pullbacked and the flat metric. In this
setting, gauge invariance amounts to a large number of possible diffeomorphisms ϕ, i.e. the decomposition
gµν = ηµν + hµν is not unique. The non-uniqueness grants us gauge freedom.

Analogously to electrodynamics, gauge freedom arises there since potentials are not unique. The EM fields
are the related to changes in potentials, not the potential itself. This means if the potentials differ by some
constant, you can define the difference in potentials to subtract that constant off. This is analogous to what’s
done in linear gravity: the diffeomorphisms, which cause the field hµν , differ by some quantity, but in this
case it’s 2ϵ∂(µξν) (and not a scalar constant C).

Problem 37. Helicity.

Recall in general that the rotation matrix in the xy-plane is given by

R =

[
cos θ − sin θ
sin θ cos θ

]
This means our coordinate transformation will look like

Cµν = Rα
µCαβR

β
ν .

(Recall rotating a matrix in general).



Now, we know Cαβ - it’s equation (7.109). After cranking through all the algebra, you should find

Cµν =


0 0 0 0
0 cos(2θ)h+ + sin(2θ)h× cos(2θ)h× − sin(2θ)h+ 0
0 cos(2θ)h× − sin(2θ)h+ − cos(2θ)h+ − sin(2θ)h× 0
0 0 0 0

 .

Therefore the polarisation factors transform as

hR,L → h′
R,L = e∓i2θhR,L

as per our redefinition hR,L. This means GWs are of helicity ±2.


