
FYS4160 - General Relativity
Problem Set 12 Solutions

Spring 2024

These solutions are credited to Jake Gordin, who wrote them in the years 2020-23.

If you spot any typos, mistakes, don’t hesitate to contact me at halvor.melkild@fys.uio.no. For any physics
related question please use the forum at astro-discourse.uio.no.

The idea of these solutions is to give you a sense of what a ‘model’ answer should be, and they also elaborate
on some discussions from the help sessions. I try to make them “pedagogical”: i.e. hopefully comprehensive
and most steps should be explained.

Problem 38. Area in TT gauge.

As we have seen before, the area of a 2D surface is given by A =
∫ √

−g̃dxdy, where g̃ is the induced metric
on the surface. In the TT gauge, the line element is

ds2 = −dt2 + (1 + 2sij) dx
idxj .

Therefore the induced metric will be of the form g̃ij = 1 +O(h) (i.e. a function of sij and its derivatives.)

Thus, the determinant would be of the form 1 + O
(
h2

)
and we ignore the second order term because we

are working in the linear regime. We see then that adding in a GW perturbation leaves the original area
unchanged.

Problem 39. Energy of gravitational waves.

(a) Equation 7.9 is

L =
1

2

[
(∂µh

µv) (∂νh)− (∂µh
ρσ) (∂ρh

µ
σ) +

1

2
ηµν (∂µh

ρσ) (∂νhρσ)−
1

2
ηµν (∂µh) (∂νh)

]
.

The transverse-traceless (TT) gauge means, as the name implies, the perturbation is transverse, ∂µhµν

= 0, and traceless, h = 0. This immediately reduces to action to1

L =
1

2

[
− (∂µh

ρσ) (∂ρh
µ
σ) +

1

2
ηµν (∂µh

ρσ) (∂νhρσ)

]
.

We note that since the wave is in the x3-direction, kρ = (ω, 0, 0, ω). We use the general solution for
hµν = Cµνe

ixρk
ρ

to write

∂ρhµν = Cµν∂ρe
ik·x = ikρCµνe

ik·x = ikρhµν thus, ∂1hµν = ∂2hµν = 0

The first term can be written as ηµν (∂µh
ρσ) (∂ρhνσ). The index ρ has to be either 1 or 2 if the term

is to be nonzero. But this means the derivative ∂ρ is either ∂1hνσ or ∂2hνσ, which we just showed is
also zero. Hence the first term in the action is zero. We have left

L =
1

2
ηµν (∂µh

ρσ) (∂νhρσ) =
1

2
(∂µh

ρσ) (∂µhρσ) .

We also know the TT gauge fixes the nonzero parts of hµν to be h11, h12, h21, h22., and so if we sum
over ρ, σ we find

L ∝ (∂µh
ρσ) (∂µhρσ) =

(
∂µh

11
)
(∂µh11) +

(
∂µh

12
)
(∂µh12) +

(
∂µh

21
)
(∂µh21) +

(
∂µh

22
)
(∂µh22)

1Note the matching indices for the transverse condition.
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Since h11 = −h22 and h12 = h21, this becomes

L ∝
(
∂µh

11
)
(∂µh11) +

(
∂µh

12
)
(∂µh12) .

(b) We have

L =
1

2
ηµν (∂µh

ρσ) (∂νhρσ) .

We want to compute

tνµ = hρσ,µ
∂L

∂hρσ,ν
− δνµL

This is straightforward since
∂L

∂hρσ,ν
=

1

2
ηµν (∂µh

ρσ)

Therefore
tνµ =

1

2
∂µhρσ∂

νhρσ − δνµL.

The energy flux in the ith direction (recall the breakdown of Tµν in problem set 7) is t0i. Therefore,
noting that δνµ = 0 if µ ̸= ν, we have

t0i =
1

2
∂0hρσ∂ih

ρσ.

Using the results from part (a), in terms of the wave’s being in the x3-direction, this becomes

t03 = ω2(h2
11 + h2

12) = ω2(h2
+ + h2

×).

(c) Eq. (7.182) is

hij =
2G

r

d2Jij
dt2

Here Jij is the reduced quadrupole moment. I’ve omitted the notation telling us we’re in the TT
gauge. The result follows immediately from part (b):

t0i =
1

2
∂0hρσ∂ih

ρσ.

We compute first

∂0hij =
2G

r

d3Jij
dt3

and ∂khij = −∂0hij = −2G

r

d3Jij
dt3

.

where ∂khij = −∂0hij follows because xρk
ρ = −tω+x3ω for a x3-directional wave and because we are

far away from the source (cf. Carroll equation (7.183)). Thus we get for the energy flux,

t0i = −2G2

r2
d3Jij
dt3

d3J ij

dt3
.

Problem 40. The LIGO observation.

The energy density is contained in the t00 term. However, we can also say

t00 = t33 = −t03

because of our TT-gauge (check this explicitly if you remain unsure). We also note that in the original
Einstein-Hilbert action, there is a factor of 1/16πG that we left out since we only cared about proportionality
in part (a). Restoring it, and noting the factor of a 1/2 we picked up, we get

t03 =
1

32πG
ω2(h2

+ + h2
×).



The way the two polarisation terms, h2
+, h

2
× distort a ring of particles is collectively called the strain. This

means we have
t03 =

1

32πG
ω2f2.

Restoring SI units, we have

t03 =
c2

32πG
ω2f2.

Now consider hypothetically a graviton. It can’t be constrained to a region smaller than its wavelength; this
gives the rough volume as λ3 = c3/ν3, where we’ve used the classic (and classical) relation c = λν. The
energy density is therefore

ρ =
hν4

c3

where here h is Planck’s constant. The frequency here can be rewritten using ω = 2πν =⇒ ν4 = ω4/(2π)4

to give

ρ =
hω4

(2π)4c3
.

The ratio of the GW energy density to a single graviton is therefore

E ≡ t03
ρ

=
c5f2π3

2Ghω2
.

We choose parameters f ∼ 10−21 and ω ∼ 750Hz and we find E ∼ 1040. We thus require roughly a sensitivity
improvement on the order of 1040 if we are to hope to detect individual gravitons (at least with LIGO) (A
bit of a tall order).

Note that it’s not entirely clear that graviton energy can be given as hν, as it is for photons. It’s not known
currently what factors contribute to the "bare" graviton energy; but since we don’t know, we’re assuming
for now that we can use the same relation we use for photons (if only this logic worked in all parts of life).


