Relativistic quantum field theory

Problem sheet ' 0 '

\rightsquigarrow These problems are scheduled for discussion on Friday, 21 August 2020

Problem 1

This problem serves as a reminder to practice the use of tensor notation.
a) Write the following in index notation:

- ∇S (where S is a scalar).
- $\nabla \cdot \mathbf{A}, \nabla \times \mathbf{A}$ (where \mathbf{A} is a 3 D vector).
- Trace and Transpose of a matrix M.
b) Prove the following 3D identitites, using index notation:
- $\nabla \cdot(\nabla \times \mathbf{A})=0$, where \mathbf{A} is a 3D vector.
- $\nabla \times(\nabla S)=0$, where S is a scalar.
c) Are these equalities valid? Correct where necessary!
- $\partial_{\mu} x^{\nu}=\delta_{\mu}^{\nu}$
- $\partial_{\mu} x^{\mu}=1$
- $\partial^{\mu} x^{\nu}=g^{\mu \nu}$
- $T_{\alpha}{ }^{\beta}{ }_{\gamma}=g^{\beta \mu} T_{\alpha \mu \gamma}=g^{\mu \beta} T_{\alpha \mu \gamma}$
- $T_{\alpha}{ }^{\beta}{ }_{\beta}=g_{\alpha \mu} g^{\beta \alpha} T^{\mu}{ }_{\alpha \beta}$
d) Construct (as many as possible)
- independent Lorentz scalars from two four-vectors A and B
- independent Lorentz scalars from a rank-2 tensor T
- independent Lorentz scalars involving one (copy of a) rank-2 tensor T and some combination of two four-vectors A and B
(NB: 'independent' here does not necessarily mean 'linearly independent', so any pair (x, y) that can be written as $y=f(x)$ is not independent.)

Problem 2

Write the Schrödinger wave function $\psi(\mathbf{x})$ in Dirac ('bra-ket') notation, by expanding the states $|\psi\rangle$ in the real space basis and then projecting it onto a basis vector $|\mathbf{x}\rangle$. Then change from the real space (or position) basis to the basis of momentum eigenstates and show that this recovers the Fourier representation of $\psi(\mathbf{x})$.

Problem 3

These problems are meant to (re-)familiarize you with delta functions, Fourier tranforms and complex integration. Prove the following identities:
a)

$$
\int d^{3} x \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} k_{j} f(\mathbf{x})=i \frac{d f}{d x_{j}}(\mathbf{y})
$$

Hint: Get rid of k_{j} before you perform the $\int d^{3} k$ integration!
b)

$$
\int_{-\infty}^{\infty} d x \frac{e^{i k x}}{a^{2}+x^{2}}=\frac{\pi}{a} e^{-|k| a} \quad(a>0)
$$

Hint: Rewrite this integral as a closed countour integral in the complex plane; choose the upper or lower half-circle as contour such that the integral over the complex part of the contour vanishes. This means that you need to consider the cases $k<0$ and $k>0$ separately.

