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Midterm exam
Lecture autumn 2020: Relativistic quantum field theory (FYS4170)

 Carefully read all questions before you start to answer them! Note that you
don’t have to answer the questions in the order presented here, so start with those
that you feel most sure about. Keep your descriptions self-contained, but as short
and concise as possible! Answers given in English are preferred; however, feel
free to write in Scandinavian if you struggle with formulations!
Maximal number of available points: 50.

Good luck!

Problem 1 (6 points)
Let us start by revisiting one of the important conceptual aspects of quantum field
theory.

a) Demonstrate that a naive quantization of relativistic particles, along the lines
of how Schrödinger quantised a non-relativistic particle, leads to the existence
of negative energies! Why is this not acceptable for a physical theory?
(3 points)

b) When adopting the canonical quantization prescription that we learned about
in this course, we still encountered the same relativistic wave equation as one
would expect from the argument in a). What is the fundamental difference, both
conceptually (in the procedure) and in terms of interpretation (of the resulting
equation of motion)? Explain briefly (in words) how to obtain the Hamiltonian
H of a scalar quantum field, and state it in a form where it becomes manifest
that its eigenvalues are bounded from below! (3 points)

Problem 2 (9 points)
Compute the following expressions involving Dirac matrices and spinors (p refers
to the 4-momentum of a physical, i.e. on-shell particle):

a) γµγ
ργµ (2 points)

b) Tr
[
γµ/pγν/p

]
(3 points)

c) (v̄rPLγ
µus)∗ (2 points)

d) (ūrγ5γµγνus)
∗

(2 points)
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Problem 3 (14 points)
We have learned how to use Feynman rules to compute both n-point correlation
functions and the invariant matrix element.

a) The figure shows an example diagram for φ4 theo-
ry. What is the contribution to the invariant matrix
element from this diagram? (4 points)
[Please use the same momentum conventions as in-
dicated. Don’t try to evaluate non-trivial integrals
(i.e. those not just over delta functions).]

 

b) Consider the QED process e+e− → γγ. Draw all Feynman diagrams that con-
tribute to the corresponding n-point correlation function to fourth order in e.
Indicate those that also contribute to the invariant matrix element, and argue
in each case why the others do not contribute! (8 points)
[You may save time time by not actually drawing every single diagram – but
then you must explain well how to obtain the missing ones, based on those that
you have drawn.]

c) Calculate the cross section for e+e− → γ, to fourth order in αem ≡ e2/(4π)!
(2 points)
[Hint: A good argument for the result may not require a detailed calculation...]

Problem 4 (21 points)
Let us consider a theory containing Dirac fermions ψ and a pseudoscalar φ:

L = ψ̄(i/∂ −m)ψ +
1

2
(∂µφ)2 − 1

2
m2
φφ

2 − igψ̄γ5ψφ .

We focus on the process ψψ̄ → φφ, i.e. the production of pseudoscalars (with outgoing
four-momenta kµ1 and kµ2 ) from fermion anti-fermion annihilation (with incoming four-
momenta pµ1 and pµ2).

a) Show that the vertex rule for this theory is given by −gγ5, by computing the
3-point function

〈
Ω|T

{
ψψ̄φ

}
|Ω
〉

to leading order (i.e. to lowest non-vanishing
order in g)! (4 points)

b) Draw all leading-order diagrams that contribute to this process (i.e. toM), and
state their values by applying Feynman rules. Simplify these expressions as far
as possible, by using the Dirac equation! (5 points)

c) Now compute the absolute value of the invariant amplitude (squared), for un-
polarized particles in the external states. Show that, under the assumption that
the produced particles are very light (i.e. mφ � m), this expression can be
simplified to (6 points)

−g
4

2

(k1 · k2)2

(p1 · k1)(p1 · k2)
+ g4

(
p1 · k2
p1 · k1

+
p1 · k1
p1 · k2

)
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d) Finally, compute the differential, unpolarized cross section, dσ/d cos θ, in the
center-of-mass frame (again in the limit of mφ � m)! Convince yourself that
the result has the expected behaviour at high energies! (6 points)
[Plus a bonus of 3 points if you are able to explain the behaviour for very low
energies as a consequence of a discrete symmetry!]

Formulas that you might find useful:

γ0
†

= γ0 , γi
†

= −γi  γµ†γ0 = γ0γµ (1)

γ5
†

= γ5
T

= γ5 , PL,R ≡
1

2
(1∓ γ5), (γ5)2 = 1 , {γ5, γµ} = 0 (2)
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