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1 Introduction

The concepts of groups and their representations are vital in high-energy physics.
Physical theories are often constructed from postulating invariance of the the-
ory under certain transformations; each such class of transformations (usually
indexed by some set of parameters) describes a group, with the specific trans-
formations corresponding to elements of the group.

Examples of such transformations, which can be categorized in groups, in-
clude the Poincaré group — the group describing Lorentz transformations and
translations in Minkowski space — and the matrix groups describing gauge
transformations, such as the special unitary groups SU(N).

This note is intended to give a brief introduction to the group theory nec-
essary for this course, by providing definitions and examples of groups and
their representations. We will in particular focus on a class of groups called
Lie groups; the representations of these groups can be constructed continuously
from corresponding objects called Lie algebras.

2 Lie groups

First, we define exactly what is meant by a group.

A group G is a set G = {g} along with an operation ◦, defined so that

• For any g1, g2 ∈ G,
g1 ◦ g2 ∈ G. (1)

• For any g1, g2, g3 ∈ G,

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3. (2)

• There exists an identity element I ∈ G, such that for any g ∈ G,

I ◦ g = g ◦ I = g. (3)

• Each element g ∈ G has an inverse g−1 ∈ G, which satisfies

g ◦ g−1 = g−1 ◦ g = I. (4)
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A simple example of a group is the general linear group GL(N) of invertible
N ×N matrices, with the operation ◦ representing ordinary matrix multiplica-
tion. It is easy to demonstrate that these satisfy the definition of a group: (1)
is satisfied since a matrix is invertible if and only if its determinant is different
from zero, and since for any two matrices A and B, det (AB) = det (A) det (B);
(2) follows from the associativity of matrix multiplication; (3) is satisfied by the
identity matrix IN×N ; and (4) is immediately satisfied by the previous require-
ment that the matrices be invertible.

The general linear group has several subgroups — groups that by themselves
satisfy the group definition, but where each group element is also an element of
some larger group with the same operation ◦. An example is the special unitary
group SU(N), consisting of all unitary N ×N matrices with determinants equal
to 1. Demonstrating that these matrices, still using matrix multiplication as
the operation ◦, satisfy the conditions (1)–(4) is left as an exercise.

In physics, groups are typically used to categorize various transformations.
We usually want to parametrize such transformation groups in an analytic and
continuous way; this is satisfied by the class of groups called Lie groups. Mathe-
matically, these groups are geometrical objects called manifolds, which in prac-
tice means that they can be parametrized smoothly (by any number of parame-
ters), and that the group operation ◦ is a smooth function of these parameters.

The previously discussed general linear group is a trivial example of a Lie
group; since the elements of the matrices are just complex numbers, we can
simply assign two parameters for each matrix element,1 making matrix multi-
plication a simple analytical function of said parameters.

3 Representations

As we just noted, groups in physics are typically used to categorize transforma-
tions. These transformations must obviously act on something; this is typically
some kind of vector, either a coordinate vector like the Minkowski coordinates
xµ, or for example a wave function. In general, these vectors belong to a vector
space V .

In order for the transformation group elements to act on vectors in this
space, we need some mapping of the group elements to the space of linear,
invertible maps on V — specifically, we need a map ρ : G → GL(V ) where
GL(V ) is the subspace of GL(N) that maps V onto itself.2 Such a map is called
a representation of the group G; we denote its action by ρ(g)vi, where g ∈ G
and vi ∈ V , and require that it behaves as ρ(g1 ◦ g2) = ρ(g1)ρ(g2).

1Note that since the matrices are restricted to be invertible there is some redundancy in
this parametrization, but this is unimportant for illustration purposes.

2N is here the dimension of the vector space V ; if N is finite, the matrix representation
as presented here is possible. If not — for example if V is a Hilbert space containing wave
functions, which formally is infinite-dimensional — such a matrix representation cannot be
explicitly constructed. We must then consider GL(V ) to be the group of linear, invertible
operators on V . The rest of the analysis works out in the same way, except that we cannot
write down the representations quite as explicitly.
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For the matrix groups like SU(N) these representations are often trivial,
since by the definition of the groups their elements already belong to GL(N).
The representation obtained directly from the definition of a matrix group is
called its fundamental representation.

Perhaps the most important group for this course is the Poincaré group; in
particular, a representation of this group based on the so-called Dirac matrices is
a possible starting point for constructing the quantum theory of fermion fields.
The Poincaré group describes Lorentz transformations, i.e. rotations and boosts,
along with translations in four-vector space. In general, the representations
of the Poincaré group are written as operators U(Λ, a); here Λ describes the
familiar Lorentz transformations, while a is a four-vector parametrizing the
translation. You will explore some of these representations and their properties
in detail during this course.

3.1 Irreducible representations

In physics, we are usually most interested in representations that are what
we call irreducible representations, often abbreviated irreps. A representation
is said to be irreducible if there is no subspace of V that is closed under its
operation; that is, if there is no W ⊂ V such that ρ(g)wi ∈ W for all g ∈ G,
wi ∈ W .

This is best illustrated by an example of the opposite, a reducible represen-
tation. Suppose that we want the representation of a group G to act on R2, and
that we have a representation parametrized as

ρ(g) =

(
a b
0 c

)
, (5)

where g ∈ G and a, b, c ∈ R. From this we can see that the subspace of R2

spanned by

(
1
0

)
is closed under the operation of the group representation,

since ρ(g)

(
1
0

)
=

(
a
0

)
for all g.

The usefulness of irreps is partly due to a result called Schur’s lemma,34

which states that if any operator commutes with all elements of an irreducible
representation, it is proportional to the identity, with the proportionality con-
stant denoted by λ.

What this means in practice is that the states on which the elements of the
irrep act, i.e. vectors in V , are eigenstates of this operator with eigenvalue λ.
Such operators are called Casimir operators, and the Casimir invariants λ can
be used to label the representation.

3I. Schur, Neue Begründung der Theorie der Gruppencharaktere, Sitzungsberichte der
Königlich-Preussischen Akademie der Wissenschaften zu Berlin (1905).

4The remainder of this section is not strictly necessary for the course, so there is no need
for concern if anything is unclear here.
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States with different physical properties often transform under different rep-
resentations of groups; for example, as you will see in this course, fermions trans-
form under a certain representation of the Poincaré group defined by the Dirac
matrices. The Casimir operators of this group label representations according to
their squared mass m2 and spin quantum number s; the aforementioned fermion
representation can be shown to satisfy s = 1

2 .

4 Lie algebras

We now return to the subject of Lie groups, and how we can construct represen-
tations for this type of groups. As noted above, Lie groups can be parametrized
in a smooth, continuous way; this means that the action of their representation
on states should similarly be continuous. We can therefore decompose the action
of any element in a Lie group into a product of infinitesimal transformations.
The group element giving such an infinitesimal transformation can be written
as I + iajgj , j = 1, 2, . . . , d; here d is the dimension of the group (considering G
as a vector space, d is the number of basis vectors), aj are arbitrary infinitesimal
coefficients (the chosen factorization, extracting a factor i, is conventional), and
gj are called the generators of the representation. The latter constitute a basis
for the space of all such infinitesimal transformations. We can then write any
arbitrary, finite, member g of the representation as

g = lim
n→∞

(
I +

1

n
iajgj

)n

(6)

≡ exp (iajgj), (7)

which is called the exponential map from the space of the generators to the
representation space. aj are now finite parameters.

The generators of a representation of G form a vector space, which we denote
by g. Along with the commutation relation

[gi, gj ] = ifijkgk, (8)

they form what is called the Lie algebra of the Lie group. The constants fijk,
where i, j, k = 1, 2, . . . , d, are called the structure constants of the algebra. In
practice, we typically refer to (8) as the algebra of a Lie group, and let any
set of matrices that fulfill the same algebra form a representation of the group
through the exponential map (7).

For completeness, the general definition of a Lie algebra is as follows:

A Lie algebra is a linear vector space V defined along with a binary opera-
tor5 [, ] : V × V → V , that satisfies the following conditions:

• For any vi, wi ∈ V , xi, yi ∈ C,

[xivi, yjwj ] = xiyj [vi, wj ]. (9)
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• For any v, w ∈ V ,
[v, w] = −[w, v]. (10)

• For any v1, v2, v3 ∈ V ,

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v2, v2]] = 0, (11)

which is called the Jacobi identity. Writing the Lie bracket for a set of
basis vectors as in (8), the Jacobi identity can be expressed in terms
of the structure constants as

fijmfmkl + fjkmfmil + fkimfmjl = 0. (12)

Since all elements of a representation can be constructed from the genera-
tors through the exponential map, we usually just specify a representation by
its generators. These describe infinitesimal transformations where we can ex-
pand around some small parameter, and are often easier to work with than the
“full” group members. An important example, that appears frequently in gauge
theories, is the adjoint representation; the generators gAi of this representation
are defined through the structure constants as(

gAi
)
jk

= −ifijk. (13)

It can be shown through the Jacobi identity (12) that the generators of the
adjoint representation indeed satisfy the algebra (8).

This means that for matrix groups, the dimension of the adjoint representa-
tion (really the dimension of the vector space on which it acts) will in general
differ from that of the fundamental representation; the fundamental represen-
tation of GL(N) clearly has dimension N , whereas the adjoint representation
has dimension equal to the number of generators. As a side note, this is why in
Quantum Chromodynamics, the theory of strong interactions in the Standard
Model, quarks appear in triplets while gluons appear in octets, since they trans-
form in the fundamental and adjoint representations, respectively, of SU(3).

5This operator is called a Lie bracket; as the notation suggests it is often the commutator
[A,B] = AB−BA, where the Lie algebra definition is automatically satisfied, but any operator
that satisfies the same conditions works.
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