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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 10

Problem 1 Contractions for fermion fields (J. Skaar)

a) Wick’s theorem for two fermion fields is

Tψ(x)ψ(y) = Nψ(x)ψ(y) + ψ(x)ψ(y). (1)

If (1) is taken as the definition of the contraction ψ(x)ψ(y), and

SF (x− y) = ⟨0|Tψ(x)ψ(y)|0⟩, (2)

prove that

ψ(x)ψ(y) = ⟨0|Tψ(x)ψ(y)|0⟩ = SF (x− y)

=

{
{ψ+(x), ψ

−
(y)}, x0 > y0,

−{ψ+
(y), ψ−(x)}, x0 < y0,

(3)

= −ψ(y)ψ(x),

and

ψ(x)ψ(y) = 0 = ψ(x)ψ(y) (4)

(Strictly speaking, we need spinor indices on the spinors above to make sense
of the equations).

Solution: The first equality follows by taking the vacuum expectation
value of (1), since the vacuum expectation value of normal ordered
operators is zero. For the last equality, note that for x0 > y0,

Tψ(x)ψ(y) = ψ(x)ψ(y) = ψ+(x)ψ
+
(y) + ψ+(x)ψ

−
(y)

+ ψ−(x)ψ
+
(y) + ψ−(x)ψ

−
(y). (5)

Taking the vacuum expectation value (and taking into account the usual
expressions for ψ(x) and ψ(y) in terms of ladder operators), we obtain

⟨0|Tψ(x)ψ(y)|0⟩ = ⟨0|ψ+(x)ψ
−
(y)|0⟩ = {ψ+(x), ψ

−
(y)}. (6)

When x0 < y0 we have Tψ(x)ψ(y) = −ψ(y)ψ(x), and proceed in the
same way.

b) For all examples in P&S (see e.g. the section about Yukawa theory in Ch.
4), none of them has contractions between two external states (between two
initial-state particles, between two final-state particles, or between initial-
state and final-state particles). Can you explain why this possibility is
ignored?
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Problem 2 Interaction between fermions and a
classical electromagnetic field

a) Peskin & Schroeder problem 4.4a p. 129. Note that your result can be
represented as a Feynman diagram with associated rule (see 4.4b).

Solution: Write S = 1 + iT (and always keep the i in iT to make it
different from the time ordering symbol T ):〈

p′
∣∣iT |p⟩ = 0

〈
p′
∣∣Te−i ∫ dtHI(t)|p⟩0,connected, amputated

= 0

〈
p′
∣∣Te−i ∫ d4xeψγµψAµ |p⟩0,connected, amputated. (7)

Here we have used

HI(t) =

∫
d3xeψγµψAµ, (8)

where Aµ represent the classical, electromagnetic field, and ψ is the
interaction-picture (quantized) Dirac field.

To first order:〈
p′
∣∣iT |p⟩ = −ie

∫
d4xAµ · 0

〈
p′
∣∣Tψγµψ|p⟩0 = −ie

∫
d4xAµ · 0

〈
p′
∣∣ψγµψ|p⟩0

= −ie
∫
d4xAµ(x)e

i(p′−p)xu(p′)γµu(p)

= −ieÃµ(p′ − p)u(p′)γµu(p). (9)

To obtain the second line, we use that the contraction between ψ(x)
and |p⟩0 gives u(p)e−ipx. The other contraction gives u(p′)eip

′x. Note
the presence of the exponentials. (In the momentum-space Feynman
rules for QED or Yukawa theory, the exponentials are omitted, but
that is because they haved been used together with

∫
d4x to obtain

momentum-conserving delta functions.)
We note that (9) can be represented by the Feynman diagram and

Feynman rule mentioned in 4.4b.

b) Specialize your result to the case where the classical field is a scalar
potential V (x) which is independent of time. Also assume that the particle
is nonrelativistic.

Hint: You need the equation below (4.133) in P&S.

Solution: To get a nonzero result, the input and output spins must
match. The result is〈

p′
∣∣iT |p⟩ = −iṼ (q) 2πδ(Ep′ − Ep) · 2m, q = p′ − p, (10)

which is (4.124) in P&S, except for the extra 2m factor due to the
relativistic normalization of |p⟩ and |p′⟩ here.
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c) In what sense is 4-momentum conserved in this process, in the general
case and in the special case where the classical field is independent of time?

Solution: We have p′ = p + q, i.e., the output momentum is equal to
the input momentum plus the momentum from the Fourier component
of the classical field. In the general case the classical field consists
of a spectrum of Fourier components with momenta q; this leads to
a spectrum of output momenta p′ even though p is fixed. When the
classical field is independent of time the Fourier transform contains a
delta function δ(q0) so the input and output energies of the fermion are
equal.

Problem 3 Spinor algebra and trace methods (T.

Klungland)

a) For any operator Γ consisting of a product of an arbitrary number of γ
matrices, and any two spinors vs(p), ur(k) (r and s label the spin states of
the two spinors) (whether the spinors are particle or antiparticle spinors is
irrelevant; these are just chosen as an example), show that

(vs(p)Γur(k))† = ur(k)Γ′vs(p), (11)

where u = u†γ0 and Γ′ is the same product as Γ with the order of matrices
reversed. You will need the identity (γµ)† = γ0γµγ0.

Solution: Writing Γ as Γ = γµ1γµ2 · · · γµn , its hermitian conjugate is
given by

Γ† = (γµn)† · · · (γµ2)†(γµ1)†

= γ0γµnγ0 · · · γ0γµ2γ0γ0γµ1γ0

= γ0γµn · · · γµ2γµ1γ0

= γ0Γ′γ0,

where the third equality follows since all “interior” γ0 matrices are in
pairs, all of which multiply to 1. Using this, our desired result follows
almost immediately:

(vs(p)Γur(k))† =
(
vs†(p)γ0Γur(k)

)†
= ur†(k)Γ†γ0vs(p)

= ur(k)Γ′vs(p).

b) Suppose that the scattering of a fermion off of some potential is described
by the matrix element

iM = iBµu
r
(
p′
)
γµus(p),

where p and p′ describe the initial and final momenta, respectively, and s
and r the initial and final spins. Bµ contains the other numerical factors,
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that are unimportant for our purposes. Use the spin sum relation in Eq.
(3.66) in P&S to show that the unpolarized, spin-averaged squared matrix
element (this means that we average over the 2 possible initial-state spins
and sum over the final-state ones) is given by

〈
|M|2

〉
=

1

2

2∑
s=1

2∑
r=1

[
Bµu

r
(
p′
)
γµus(p)

]†[
Bνu

r
(
p′
)
γνus(p)

]
(12)

=
1

2
B∗
µBνTr

[(
�p
′ +m

)
γµ(�p+m)γν

]
, (13)

where m is the mass of the fermion and �p = pµγ
µ.

Hint: One way of doing this is explained on p. 132 in P&S, but it is
easier to use a) that a product of matrices that gives a scalar, or a 1× 1
matrix can be written as its own trace, and b) the cyclic and linear
properties of traces.

Solution: Using the result of part a, we first have

〈
|M|2

〉
=

1

2
B∗
µBν

2∑
s=1

2∑
r=1

us(p)γµur
(
p′
)
ur
(
p′
)
γνus(p).

Next we note that us(p)γµur(p′)ur(p′)γνus(p) = Tr[same expression],
and use the cyclic property of traces to move us(p) from the back to the
front; moving the sums into the trace (which we can do because of the
linearity of traces) and using the aforementioned spin sum relation, we
find〈

|M|2
〉
=

1

2
B∗
µBνTr

[(
2∑
s=1

us(p)us(p)

)
γµ

(
2∑
r=1

ur
(
p′
)
ur
(
p′
))
γν

]

=
1

2
B∗
µBνTr

[(
�p
′ +m

)
γµ(�p+m)γν

]
.


