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FYS4170/9170 — Relativistic Quantum Field Theory
Problem set 11

Problem 1 Scattering from a classical electromag-
netic field (from the 2018 final exam)

(T. Bringmann)

Let us describe the scattering of an electron, or positron, in a time-
independent classical electromagnetic field. In Feynman diagrams (as
you showed in the previous problem set), this is done by simply replacing the
QED vertex rule —iey” — —ie'y“flu, where flu(q) is the Fourier transform of
the classical electromagnetic potential; ¢ = py — p; is the difference between
incoming and outgoing fermion momenta.

a) For an external potential that is not only time-independent but also
localized in space, the scattering cross section can be written as
1 &py 1
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(M(p; = py)|*(2m)6(Ef — E;). (1)

Argue why this expression makes sense, and show that it is equivalent to

do 1
a9 = WVVI(Z%‘ —>Pf)’2- (2)

b) Compute the scattering amplitude M for the scattering of an electron
in the Coulomb potential created by a nucleus of charge Z, ie. A =
(Ze/4mr,0). How does this expression look like for the scattering of a
positron?

¢) Using the above expressions, calculate the spin-averaged differential
cross-section for the scattering of an electron in a Coulomb potential, as
a function of the scattering angle 6. The result is known as the Mott
formula. Take the non-relativistic limit of this expression to obtain a well-
known expression for the scattering of charged particles obtained earlier by

Rutherford.

Problem 2 Kinematics (T. Bringmann — solutions: J. Van den

Abeele)

This problem considers, in some detail, the phenomenologically very
important relativistic kinematics of two-body reactions where two particles
of four-momenta p; and po and masses m1 and mo in the initial state scatter
to particles of momenta ps and ps and masses mg and my in the final state.

a) How many independent Lorentz-invariant kinematic invariants can one
form out of the four momenta p; (i.e. how many Lorentz scalars that are
not simply the masses of the involved particles)? In other words: how many
kinematical degrees of freedom are required to describe the momenta of all
involved particles?

What would be the answer for a 2 — 3 process?
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b) The Lorentz-invariant Mandelstam variables are defined by

s=(p+p2)°,  t=(i—-p)’, u=(p—pa)°. (3)
Show that they are not independent — as expected from a) — but satisfy

s+t+u=mi+mi+mi+mi. (4)

Problem 3 Bhabha scattering in the high-energy

llmlt (T. Bringmann, T. Klungland — solutions: J. Van den
Abeele, T. Klungland)

This problem considers the QED process of electron-positron scattering,
ete™ — eTe™, also known as Bhabha scattering.

a) Draw the two Feynman diagrams that describe this process to lowest
order — i.e. O(a?), with a = €?/4x, in the cross section — and write down
the corresponding amplitudes M; for each diagram (i = 1,2) in momentum
representation.

b) When ‘adding’ these two diagrams to the total amplitude, M =
My — Ms, there is a relative minus sign. Derive this sign by working
out the required contractions, and counting the number of fermion field
commutations it takes to get the ordering of the contractions on the same
form in both terms. As a rule of thumb it can also be seen directly from the
Feynman diagrams, if you count the number of external fermion lines that
need to be swapped for the two diagrams to be equivalent.

c) For high-energy scattering processes, i.e. where s > m?2, the electron
masses can to a very good approximation be set to zero. Using this, and
starting from Eq. (4.85) in P&S, show that the unpolarized cross-section
(meaning that we take the average of the incoming spin states, and include
all possible outgoing spin states by summing over these) for this process can
be written differential in ¢ as

do 1

T = MP), )

Here (|M|?) is the squared total matrix element, averaged over initial-state
spins and summing over final-state ones.

d) Calculate the leading-order differential cross-section for Bhabha
scattering, using Eq. (5), in the ultrarelativistic limit s > m2. Express
the result in terms of the Mandelstam variables s, t, u.

You will notice the slightly alarming fact that this expression is divergent
for t = 0, i.e. for p3 = p1 (t = 0 only implies p; = p3 in the massless case like
here, not in general); this divergence originates from the so-called ¢-channel
diagram in the limit where the photon energy becomes extremely low. This
is an example of a “soft” divergence, which is very common in this type of
calculation involving massless particles (in this case it is the photon that
causes problems); whenever a massless particle is radiated off or exchanged,
the cross-section will be divergent in the limit where its energy goes to zero.

Luckily this isn’t terribly relevant for practical cases; ¢ = 0 implies
cosf = 1, i.e. forward scattering where the electron carries on in exactly
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the same direction. At a particle collider this means that the electron
will continue down the tube where the positron came from without being
detected; thus we will not actually observe any events with ¢ = 0. In any
case, the divergence will be canceled by including higher order diagrams.



