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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 11

Problem 1 Scattering from a classical electromag-
netic field (from the 2018 final exam)
(T. Bringmann)

Let us describe the scattering of an electron, or positron, in a time-
independent classical electromagnetic field. In Feynman diagrams (as
you showed in the previous problem set), this is done by simply replacing the
QED vertex rule −ieγµ → −ieγµÃµ, where Ãµ(q) is the Fourier transform of
the classical electromagnetic potential; q ≡ pf − pi is the difference between
incoming and outgoing fermion momenta.

a) For an external potential that is not only time-independent but also
localized in space, the scattering cross section can be written as

dσ =
1

2|pi|
d3pf

(2π)3
1

2Ef
|M(pi → pf )|2(2π)δ(Ef − Ei). (1)

Argue why this expression makes sense, and show that it is equivalent to
dσ

dΩ
=

1

16π2
|M(pi → pf )|2. (2)

b) Compute the scattering amplitude M for the scattering of an electron
in the Coulomb potential created by a nucleus of charge Z, i.e. A =
(Ze/4πr,0). How does this expression look like for the scattering of a
positron?

Hint: The Fourier transform of the Coulomb potential is most easily
calculated by adding a regulating factor e−µr to the potential, and then
sending the ‘photon mass’ µ to zero at the end of the calculation.

c) Using the above expressions, calculate the spin-averaged differential
cross-section for the scattering of an electron in a Coulomb potential, as
a function of the scattering angle θ. The result is known as the Mott
formula. Take the non-relativistic limit of this expression to obtain a well-
known expression for the scattering of charged particles obtained earlier by
Rutherford.

Hint: You can simplify the resulting expression by using the
trigonometric identity 1− cos θ = 2 sin2 (θ/2).

Problem 2 Kinematics (T. Bringmann – solutions: J. Van den

Abeele)

This problem considers, in some detail, the phenomenologically very
important relativistic kinematics of two-body reactions where two particles
of four-momenta p1 and p2 and masses m1 and m2 in the initial state scatter
to particles of momenta p3 and p4 and masses m3 and m4 in the final state.
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a) How many independent Lorentz-invariant kinematic invariants can one
form out of the four momenta pi (i.e. how many Lorentz scalars that are
not simply the masses of the involved particles)? In other words: how many
kinematical degrees of freedom are required to describe the momenta of all
involved particles?

What would be the answer for a 2 → 3 process?

b) The Lorentz-invariant Mandelstam variables are defined by

s ≡ (p1 + p2)
2 , t ≡ (p1 − p3)

2 , u ≡ (p1 − p4)
2 . (3)

Show that they are not independent – as expected from a) – but satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (4)

Problem 3 Bhabha scattering in the high-energy
limit (T. Bringmann, T. Klungland – solutions: J. Van den
Abeele, T. Klungland)

This problem considers the QED process of electron-positron scattering,
e+e− → e+e−, also known as Bhabha scattering.

a) Draw the two Feynman diagrams that describe this process to lowest
order – i.e. O(α2), with α = e2/4π, in the cross section – and write down
the corresponding amplitudes Mi for each diagram (i = 1, 2) in momentum
representation.

b) When ‘adding’ these two diagrams to the total amplitude, M =
M1 − M2, there is a relative minus sign. Derive this sign by working
out the required contractions, and counting the number of fermion field
commutations it takes to get the ordering of the contractions on the same
form in both terms. As a rule of thumb it can also be seen directly from the
Feynman diagrams, if you count the number of external fermion lines that
need to be swapped for the two diagrams to be equivalent.

c) For high-energy scattering processes, i.e. where s � m2
e, the electron

masses can to a very good approximation be set to zero. Using this, and
starting from Eq. (4.85) in P&S, show that the unpolarized cross-section
(meaning that we take the average of the incoming spin states, and include
all possible outgoing spin states by summing over these) for this process can
be written differential in t as

dσ

dt
=

1

16πs2
〈|M|2〉. (5)

Here 〈|M|2〉 is the squared total matrix element, averaged over initial-state
spins and summing over final-state ones.

d) Calculate the leading-order differential cross-section for Bhabha
scattering, using Eq. (5), in the ultrarelativistic limit s � m2

e. Express
the result in terms of the Mandelstam variables s, t, u.

You will notice the slightly alarming fact that this expression is divergent
for t = 0, i.e. for p3 = p1 (t = 0 only implies p1 = p3 in the massless case like
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here, not in general); this divergence originates from the so-called t-channel
diagram in the limit where the photon energy becomes extremely low. This
is an example of a “soft” divergence, which is very common in this type of
calculation involving massless particles (in this case it is the photon that
causes problems); whenever a massless particle is radiated off or exchanged,
the cross-section will be divergent in the limit where its energy goes to zero.

Luckily this isn’t terribly relevant for practical cases; t = 0 implies
cos θ = 1, i.e. forward scattering where the electron carries on in exactly
the same direction. At a particle collider this means that the electron
will continue down the tube where the positron came from without being
detected; thus we will not actually observe any events with t = 0. In any
case, the divergence will be canceled by including higher order diagrams.

Hint: The squared matrix element gets three terms, 〈|M|2〉 = 〈|M1|2〉+
〈|M2|2〉 − 2Re〈M1M∗

2〉; evaluate each of these separately. The second
term requires just a minimal amount of calculations if you recognize
the similarities between the two contributing diagrams and make some
appropriate substitutions.

The spin sums in each term can be manipulated similarly to the
process on page 132 in P&S. However, notice that their manipulation is
somewhat unnecessarily cumbersome; it is easier, in particular for the
last term in the squared matrix element, to recognize that any number
can be viewed as the trace of a 1×1 matrix, and then reorganize factors
using the cyclic property of traces. For example, the expression in the
first parenthesis in Eq. (5.2) of P&S can be manipulated as

v
(
p′
)
γµu(p)u(p)γνv

(
p′
)
= Tr

[
v
(
p′
)
γµu(p)u(p)γνv

(
p′
)]

= Tr
[
v
(
p′
)
v
(
p′
)
γµu(p)u(p)γν

]
,

which allows one to use completeness relations for the spinors when
summing over spin states. It can also help to recognize that all factors
of the form vγµu, uγνu, etc. commute since they are just numbers.

Finally, you will need contraction and trace identities for γ matrices
derived in problem set 5.


