
University of Oslo
FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 11

Problem 1 Scattering from a classical electromag-
netic field (from the 2018 final exam)
(T. Bringmann)

Let us describe the scattering of an electron, or positron, in a time-
independent classical electromagnetic field. In Feynman diagrams (as
you showed in the previous problem set), this is done by simply replacing the
QED vertex rule −ieγµ → −ieγµÃµ, where Ãµ(q) is the Fourier transform of
the classical electromagnetic potential; q ≡ pf − pi is the difference between
incoming and outgoing fermion momenta.

a) For an external potential that is not only time-independent but also
localized in space, the scattering cross section can be written as

dσ =
1

2|pi|
d3pf

(2π)3
1

2Ef
|M(pi → pf )|2(2π)δ(Ef − Ei). (1)

Argue why this expression makes sense, and show that it is equivalent to

dσ

dΩ
=

1

16π2
|M(pi → pf )|2. (2)

Solution: Compared to the standard phase-space, the conservation
of 4-momentum is replaced by only energy conservation because in a
time-independent setting energy must still be conserved (from Noether’s
theorem) –- while the charged particles can change (the direction of)
their momentum in the external field (because it is not translationally
invariant). Compared to the common expression for 2 → n scattering,
the only difference is then a missing overall factor of (2EB)

−1; this is the
same difference as between the expressions for the cross section (2 → n)
and the decay rate (1 → n).

dσ =
1

2|pi|
d3pf

(2π)3
1

2Ef
|M(pi → pf )|2(2π)δ(Ef − Ei)

=
1

2|pi|
|pf |2d|pf |dΩ

(2π)2
1

2Ef
|M(pi → pf )|2δ(Ef − Ei)

=
|pf |
4|pi|

dEfdΩ

(2π)2
|M(pi → pf )|2δ(Ef − Ei),

where we have used E2 = |p|2 + m2 (i.e. EdE = |p|d|p|) in the last
step. The δ function also enforces |pf | = |pi|, so after integrating over
dEf , we arrive at the desired result.

b) Compute the scattering amplitude M for the scattering of an electron
in the Coulomb potential created by a nucleus of charge Z, i.e. A =
(Ze/4πr,0). How does this expression look like for the scattering of a
positron?
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Hint: The Fourier transform of the Coulomb potential is most easily
calculated by adding a regulating factor e−µr to the potential, and then
sending the ‘photon mass’ µ to zero at the end of the calculation.

Solution: The Coulomb potential of the (always positively charged)
nucleus is given by

Aµ(x) = (Ze/4πr, 0, 0, 0),

so its Fourier transform is

Ã0(q) =

∫
d3xe−iq·xA0(x)

=

∫ ∞

0
r2dr

∫ +1

−1
d(cos θ)

∫ 2π

0
dφe−i|q|r cos θ Ze

4πr

=
Ze

−2i|q|

∫ ∞

0
dr
(
e−i|q|r − ei|q|r

)
.

The integration over r has to be regulated (as we would get ei∞ and e−i∞

after integration). Let us introduce a regulating term e−µr (where µ > 0)
so that e−µr → 0 as r → ∞. (This prescription is actually physically
well motivated because it corresponds to replacing the Coulomb potential
with a Yukawa potential, i.e. the potential generated by a force carrier
with mass µ.)

A0(q) = lim
µ→0

Ze

2i|q|

∫ ∞

0
dr
(
ei|q|r − e−i|q|r

)
e−µr

= lim
µ→0

−Ze
2i|q|2

(
1

i|q| − µ
+

1

i|q|+ µ

)
=

Ze

|q|2
.

The amplitude for the scattering of electrons from this potential is thus
given by

iM = ur(pf )
(
−ieγ0Ã0(pf − pi)

)
us(pi)

= −iZe
2

|q|2
ur(pf )γ

0us(pi)

= −iZe
2

|q|2
ur†(pf )u

s(pi).

For positrons,

iM = vr(pf )
(
−ieγ0Ã0(pf − pi)

)
vs(pi)

= −iZe
2

|q|2
vr†(pi)v

s(pf ).

By looking at the explicit expressions of u and v that we derived in
the lecture, it is fairly straight-forward to see that the fermion bilinears
are identical in the two cases, leading thus apparently to the same value
of M. However, the amplitude derives from contracting an expression of
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the form Aµ
〈
f
∣∣ψγµψ∣∣i〉. If the initial state is an electron (i.e. a fermion),

both contractions can be performed without changing the location of the
fermion operators. For an initial state positron, however, ψ has first to
be moved past ψ before it can be contracted with |i〉. This gives a
relative minus sign – which is exactly the expected difference between
an attractive and repulsive Coulomb potential.

c) Using the above expressions, calculate the spin-averaged differential
cross-section for the scattering of an electron in a Coulomb potential, as
a function of the scattering angle θ. The result is known as the Mott
formula. Take the non-relativistic limit of this expression to obtain a well-
known expression for the scattering of charged particles obtained earlier by
Rutherford.

Hint: You can simplify the resulting expression by using the
trigonometric identity 1− cos θ = 2 sin2 (θ/2).

Solution: We have to sum over all possible spin configurations of the
initial and final states, and then divide by a factor of (2Si + 1) = 2 to
account for the averaging over initial state configurations:

dσ

dΩ
=

1

16π2
1

2

∑
r,s

|M|2 = 1

32π2

(
Ze2

|q|2

)2∑
r,s

∣∣ur(pf )γ0us(pi)∣∣2
=
α2Z2

2|q|4
tr
[
(�pf +m)γ0(�pi +m)γ0

]
=
α2Z2

2|q|4
(
tr
[
�pfγ

0
�piγ

0
]
+m2tr

[
γ0γ0

])
=

2α2Z2

|q|4
[
piµpfν

(
gµ0g0ν − gµνg00 + gµ0g0ν

)
+m2

]
=

2α2Z2

|q|4
[
2EiEf − pi · pf +m2

]
=

2α2Z2

|q|4
[
EiEf + pi · pf +m2

]
.

At this point, we recall that Ef = Ei ≡ E, and thus |pi| = |pf | ≡ |p| =
vE (where v is the velocity of the scattering electron). So,

pi · pf = v2E2 cos θ = v2E2

(
1− 2 sin2

θ

2

)
,

|q|2 = |pf − pi|2 = 2v2E2(1− cos θ) = 4v2E2 sin2
θ

2
.

Plugging this into the above expression, and using m2 = E2
(
1− v2

)
,
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gives

dσ

dΩ
= 2α2Z2

(
1

4v2E2 sin2 (θ/2)

)2[
E2 + v2E2

(
1− 2 sin2

θ

2

)
+m2

]
= 4E2α2Z2

(
1

4v2E2 sin2 (θ/2)

)2[
1− v2 sin2

θ

2

]
=

α2Z2

4v4E2

1− v2 sin2 (θ/2)

sin4 (θ/2)
,

which is the Mott formula. In the non-relativistic limit; v � 1 and
hence E ' m, we therefore recover the Rutherford formula:

dσ

dΩ
=

Z2α2

4m2v4 sin4 (θ/2)
.

Problem 2 Kinematics (T. Bringmann – solutions: J. Van den

Abeele)

This problem considers, in some detail, the phenomenologically very
important relativistic kinematics of two-body reactions where two particles
of four-momenta p1 and p2 and masses m1 and m2 in the initial state scatter
to particles of momenta p3 and p4 and masses m3 and m4 in the final state.

a) How many independent Lorentz-invariant kinematic invariants can one
form out of the four momenta pi (i.e. how many Lorentz scalars that are
not simply the masses of the involved particles)? In other words: how many
kinematical degrees of freedom are required to describe the momenta of all
involved particles?

What would be the answer for a 2 → 3 process?

Solution: Let’s consider a 2 → N process. The number of degrees of
freedom is given by the number of 4-momentum components pµ of the
involved particles, 4(N + 2), minus the number of constraints:

1. N + 2 on-shell conditions: p2i = m2
i

2. 4 4-momentum conservation conditions, pµ1 + pµ2 =
∑N

i=1 k
µ
i

3. 6 conditions from the Lorentz invariance of the system (3
independent rotations and 3 boosts). For example, rotating a pair
of four-vectors in spacetime by a common angle would not change
their dot product.

Thus, the system has 4(N +2)− (N +2)− 4− 6 = 3N − 4 independent
degrees of freedom.

For a 2 → 2 process, we have 2 degrees of freedom. One of the
options for these 2 independent quantities is any pair of Mandelstam
variables. For a 2 → 3 process we have 5 degrees of freedom.
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b) The Lorentz-invariant Mandelstam variables are defined by

s ≡ (p1 + p2)
2 , t ≡ (p1 − p3)

2 , u ≡ (p1 − p4)
2 . (3)

Show that they are not independent – as expected from a) – but satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (4)

Solution: From the definition of Mandelstam variables we have s ≡
(p1 + p2)

2 = m2
1 +m2

2 +2p1 · p2, t ≡ (p1 − p3)
2 = m2

1 +m2
3 − 2p1 · p3 and

u ≡ (p1 − p4)
2 = m2

1 +m2
4 − 2p1 · p4. From this we can easily calculate,

s+ t+ u = m2
1 +m2

2 + 2p1 · p2 +m2
1 +m2

3 − 2p1 · p3
+m2

1 +m2
4 − 2p1 · p4

= 3m2
1 +m2

2 +m2
3 +m2

4 + 2p1 · (p2 − p3 − p4)

= 3m2
1 +m2

2 +m2
3 +m2

4 + 2p1 · (−p1)
= m2

1 +m2
2 +m2

3 +m2
4.

Problem 3 Bhabha scattering in the high-energy
limit (T. Bringmann, T. Klungland – solutions: J. Van den
Abeele, T. Klungland)

This problem considers the QED process of electron-positron scattering,
e+e− → e+e−, also known as Bhabha scattering.

a) Draw the two Feynman diagrams that describe this process to lowest
order – i.e. O(α2), with α = e2/4π, in the cross section – and write down
the corresponding amplitudes Mi for each diagram (i = 1, 2) in momentum
representation.

Solution: To lowest order, O(α), there are two contributing QED
diagrams. Using s = (p1 + p2)

2 and t = (p3 − p1)
2, their amplitudes

are given by:

iMs =

p1

p2 p4

p3

= v(p2)(−ieγµ)u(p1)
(
−igµν
s+ iε

)
u(p3)(−ieγν)v(p4)

iMt =
p1 p3

p2 p4

= u(p3)(−ieγµ)u(p1)
(
−igµν
t+ iε

)
v(p2)(−ieγν)v(p4)
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Note that in the full Standard Model, there would be similar diagrams
with Z and h bosons mediating the process instead of a photon.
Furthermore, there is no u-channel diagram, as the final-state particles
e− and e+ are not identical.

b) When ‘adding’ these two diagrams to the total amplitude, M =
M1 − M2, there is a relative minus sign. Derive this sign by working
out the required contractions, and counting the number of fermion field
commutations it takes to get the ordering of the contractions on the same
form in both terms. As a rule of thumb it can also be seen directly from the
Feynman diagrams, if you count the number of external fermion lines that
need to be swapped for the two diagrams to be equivalent.

Solution: The s-channel diagram comes from the set of contractions

Ms ∼
〈
p3, p4

∣∣ψ(x)γµψ(x)Aµ(x)ψ(y)γ
νψ(y)Aν(y)

∣∣p1, p2〉,
while the t-channel one comes from

Mt ∼
〈
p3, p4

∣∣ψ(x)γµψ(x)Aµ(x)ψ(y)γ
νψ(y)Aν(y)

∣∣p1, p2〉.
In both cases, x and y are dummy variables that are integrated over. To
see the relative minus sign between these two expressions, notice that if
we move the ψ(y) field (in the Mt expression) past ψ(y) and ψ(x), and
then swap the order of ψ(x) and ψ(y), the structure of the contractions
is the same in both expressions. This took three permutations of fermion
fields; thus there is a relative factor (−1)3 = −1.

From the Feynman diagrams, one can transform the s-channel
diagram into the t-channel by interchanging the incoming e− line and
the outgoing e+ line. This involves one permutation of fermion lines,
indicating a relative factor of −1.

c) For high-energy scattering processes, i.e. where s � m2
e, the electron

masses can to a very good approximation be set to zero. Using this, and
starting from Eq. (4.85) in P&S, show that the unpolarized cross-section
(meaning that we take the average of the incoming spin states, and include
all possible outgoing spin states by summing over these) for this process can
be written differential in t as

dσ

dt
=

1

16πs2
〈|M|2〉. (5)

Here 〈|M|2〉 is the squared total matrix element, averaged over initial-state
spins and summing over final-state ones.

Solution: From P&S Eq. (4.85) we have(
dσ

dΩ

)
CM

=
〈|M|2〉
64π2E2

cm
.
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Recognizing that s = E2
cm and that the process is symmetric around the

collision axis, we can integrate over the solid angles dΩ = dφd(cos θ) as

σ =

∫ 2π

0
dφ︸ ︷︷ ︸

=2π

∫ 1

−1
d(cos θ)

〈|M|2〉
64π2s

.

Now, using that t = (p1 − p3)
2 = −2p1 ·p3 = s

2(cos θ − 1), we can change
integration variables to obtain

σ =

∫
dt
〈|M|2〉
16πs2

.

Noting that σ =
∫
dσ, we then get the desired expression:

dσ

dt
=

1

16πs2
〈|M|2〉.

d) Calculate the leading-order differential cross-section for Bhabha
scattering, using Eq. (5), in the ultrarelativistic limit s � m2

e. Express
the result in terms of the Mandelstam variables s, t, u.

You will notice the slightly alarming fact that this expression is divergent
for t = 0, i.e. for p3 = p1 (t = 0 only implies p1 = p3 in the massless case like
here, not in general); this divergence originates from the so-called t-channel
diagram in the limit where the photon energy becomes extremely low. This
is an example of a “soft” divergence, which is very common in this type of
calculation involving massless particles (in this case it is the photon that
causes problems); whenever a massless particle is radiated off or exchanged,
the cross-section will be divergent in the limit where its energy goes to zero.

Luckily this isn’t terribly relevant for practical cases; t = 0 implies
cos θ = 1, i.e. forward scattering where the electron carries on in exactly
the same direction. At a particle collider this means that the electron
will continue down the tube where the positron came from without being
detected; thus we will not actually observe any events with t = 0. In any
case, the divergence will be canceled by including higher order diagrams.

Hint: The squared matrix element gets three terms, 〈|M|2〉 = 〈|M1|2〉+
〈|M2|2〉 − 2Re〈M1M∗

2〉; evaluate each of these separately. The second
term requires just a minimal amount of calculations if you recognize
the similarities between the two contributing diagrams and make some
appropriate substitutions.

The spin sums in each term can be manipulated similarly to the
process on page 132 in P&S. However, notice that their manipulation is
somewhat unnecessarily cumbersome; it is easier, in particular for the
last term in the squared matrix element, to recognize that any number
can be viewed as the trace of a 1×1 matrix, and then reorganize factors
using the cyclic property of traces. For example, the expression in the
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first parenthesis in Eq. (5.2) of P&S can be manipulated as

v
(
p′
)
γµu(p)u(p)γνv

(
p′
)
= Tr

[
v
(
p′
)
γµu(p)u(p)γνv

(
p′
)]

= Tr
[
v
(
p′
)
v
(
p′
)
γµu(p)u(p)γν

]
,

which allows one to use completeness relations for the spinors when
summing over spin states. It can also help to recognize that all factors
of the form vγµu, uγνu, etc. commute since they are just numbers.

Finally, you will need contraction and trace identities for γ matrices
derived in problem set 5.

Solution: We begin by evaluating the spin-averaged squared matrix
element for the s-channel diagram, 〈[Ms|2〉. Labeling the spin states by
e−(s)e+(r) → e−(s′)e+(r′), with each label either 1 or 2, averaging over
the initial spins and summing over the final-state ones, we have

〈|Ms|2〉 =
1

4

2∑
r,s,r′,s′=1

|M|2

=
e4

4s2

2∑
r,s,r′,s′=1

[
vr(p2)γ

µus(p1)u
s(p1)γ

νvr(p2)
]

×
[
us

′
(p3)γµv

r′(p4)v
r′(p4)γνu

s′(p3)
]

=
e4

4s2
Tr[�p2γ

µ
�p1γ

ν ]Tr[�p3γµ�p4γν ].

The first trace evaluates to

Tr[�p2γ
µ
�p1γ

ν ] = p1ρp2σTr[γσγµγργν ]
= 4(pµ1p

ν
2 + pν1p

µ
2 − gµνp1 · p2).

Evaluating the second trace similarly we find, after some algebra,

〈|Ms|2〉 =
8e4

s2
[(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)]

= 2e4
(
u2 + t2

s2

)
,

where in the last line we have used that t = −2p1 · p3 = −2p2 · p4 and
u = −2p1 · p4 = −2p2 · p3 for massless particles.

The square of the t-channel diagram can be found by inspection from
the s-channel one; from part a we see that one can be converted into
the other by interchanging p2 and p3 (if the electrons were not massless
this would be slightly more complicated, as the completeness relation
for the spinors has an additional mass term with sign depending on the
particle/antiparticle nature of the spinor; but in our case this is not a
problem); this reduces to t↔ s, so that

〈|Mt|2〉 = 2e4
(
u2 + s2

t2

)
.
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Finally there is the interference term, which is given by (as was noted
in the hint, factors that are just numbers can be switched around freely)

−2Re〈MsM∗
t 〉 = − e4

2st

2∑
r,s,r′,s′=1

vr(p2)γ
µus(p1)u

s(p1)γ
νus

′
(p3)

× us
′
(p3)γµv

r′(p4)v
r′(p4)γνv

r(p2)

= − e4

2st
Tr[�p2γ

µ
�p1γ

ν
�p3γµ�p4γν ].

We evaluate this trace by first using contraction identities: Factoring
out the momenta from the “slashed” matrices by �p2γ

µ
�p1γ

ν
�p3γµ�p4γν =

p2αp1βp3σp4ργ
αγµγβγνγσγµγ

ργν we have

γα
(
γµγβγνγσγµ

)
γργν = −2γαγσ

(
γνγβγργν

)
= −8gβργαγσ.

We then find

−2Re〈MsM∗
t 〉 =

4e4

st
(p1 · p4)p2αp3σTr[γαγσ]

=
16e4

st
(p1 · p4)(p2 · p3)

= 4e4
u2

st
.

Finally, combining the three terms we have found, reorganizing a bit,
and inserting everything into Eq. (5), we get the unpolarized differential
cross-section:

dσ

dt
=

e4

8πs2

(
t2

s2
+
s2

t2
+ u2

(
1

s
+

1

t

)2
)

.


