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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 13

Problem 1 Quantization and energies (2019 final
exam, slightly modified) (T. Bringmann)

Let us start by revisiting one of the important conceptual aspects of
quantum field theory.

a) Demonstrate that a naive quantization of relativistic particles, along
the lines of how Schrödinger quantised a non-relativistic particle (i.e. taking
pµ → i∂µ and enforcing the relativistic energy-mass relation p2 = m2),
leads to the existence of negative energies! Why is this not acceptable for a
physical theory?

Solution: The heuristic way of quantizing non-relativistic particles is
to promote the Hamiltonian, H = p2/(2m), to an operator by replacing
p → −i∇. The Schrödinger equation is then an energy eigenvalue
equation for the wavefunction ψ, Eψ = Hψ = −∇2/(2m)ψ. The
corresponding Lorentz-invariant energy-momentum relation is pµpµ =
m2, and the ‘correct’ quantization prescription matching the classical
expression is pµ → i∂µ. This gives the Klein-Gordon equation,(

∂2 +m2
)
ψ = 0,

with plane wave (e±ik·x) solutions that satisfy k2 = m2. Because
i∂µe±ik·x = ∓kµe±ik·x, the energy is given by p0 = ∓k0 = ∓

√
k2 +m2.

From the classical equations of motion, such a theory is necessarily
unstable: particles would continue to increase their momentum without
any bounds (and thereby lower their energy).

b) When adopting the canonical quantization prescription that we learned
about in this course, we still encountered the same relativistic wave
equation as one would expect from the argument in a). What is the
fundamental difference, both conceptually (in the procedure) and in terms
of interpretation (of the resulting equation of motion)? Explain (in words)
how to obtain the Hamiltonian H of a scalar quantum field, and state it
in a form where it becomes manifest that its eigenvalues are bounded from
below!

Solution: The fundamental difference is that the Klein-Gordon
equation now describes the evolution of a field operator ϕ rather
than a quantum-mechanical wavefunction that this operator acts on;
what we interpreted as negative-energy solutions above are thus simply
negative frequency solutions (not related to negative eigenvalues of the
Hamiltonian). The Hamiltonian for the quantum field is obtained by
replacing the fields in the classical expression, H = πϕ̇ − L, with
field operators. By introducing annihilation and creation operators, the
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resulting expression can be diagonalized to

H =

∫
d3xH =

∫
d3k

(2π)3
ωka

†
kak,

which is manifestly positive because the harmonic oscillator frequencies
ωk =

√
|k|2 +m2 are positive, and the eigenvalues of Nk = a†kak are

non-negative integers that describe the number of field excitations with
momentum k.

c) Explain how the requirement of H > 0 enforces particles described by
the Dirac equation to be fermions! [Following the same procedure as in b),
introducing commutation relations for the fermion fields, would lead to the
expression

H =

∫
d3xH =

∫
d3k

(2π)3

∑
s=1,2

ωk

(
as†k a

s
k − bs†k b

s
k

)
.

Identify the problem with this expression and argue that it is fixed by
replacing the commutation relations with anti-commutation ones. Then
show that the resulting creation/annihilation operators create/annihilate
fermions.]

Solution: Quantizing a field ψ that satisfies the Dirac equation, by
following the same procedure as outlined above, leads to the Hamiltonian

H =

∫
d3xH =

∫
d3k

(2π)3

∑
s=1,2

ωk

(
as†k a

s
k − bs†k b

s
k

)
,

where as†k (ask) are the creation (annihilation) operators for particles,
associated to the positive-frequency solutions of the Klein-Gordon
equation with spin s; bs†k and bsk describe those for anti-particles,
associated to the negative-frequency solutions. These operators would
inherit commutation relations from the (equal-time) field quantization
prescription [ϕ(x), π(y)] = iδ(3)(x− y).

Recognizing number operators as in b), the eigenvalues of H are
thus not bounded from below. This can be solved by imposing
anti-commutation relations {ϕ(x), π(y)} = iδ(3)(x− y) instead, which

translates to
{
bsk, b

r†
k′

}
= (2π)3δrsδ(3)(k− k′). Unlike the previous case,

this is an algebra that does not distinguish between bsk and bs†k . We can

thus exchange bsk ↔ bs†k in the above Hamiltonian which, after employing
the anti-commutation relation and discarding an infinite constant, leads
to the manifestly positive Hamiltonian

H =

∫
d3xH =

∫
d3k

(2π)3

∑
s=1,2

ωk

(
as†k a

s
k + bs†k b

s
k

)
.

Creation operators satisfying anti-commutation relations describe
fermions because the excitations respect the Pauli exclusion principle
(no more than one state with identical quantum numbers is allowed),(

bs†k

)2
|0⟩ = 0,
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and the exchange of two particles results in a relative minus sign,

bs†k b
r†
k′ |0⟩ = −br†k′b

s†
k |0⟩.

Problem 2

a) What is a scalar? A pseudo-scalar? A vector? Pseudo-vector? Give
examples.

Solution: See P&S Sec. 3.4 and 3.6.

b) Is the Lagrangian scalar? The Hamiltonian?

Solution: The Lagrangian is a scalar; the Hamiltonian is not (it is the
0’th component of the 4-momentum, thus it is a component of a vector).

c) Is the three-dimensional delta function a scalar? If yes, why? If no, how

can you scale it such that it becomes scalar? Is
∫ d3p

(2π)3
1

2Ep
scalar? Why/why

not?

Solution: See P&S p. 23.

d) What are the conserved quantities associated with translational
invariance (in space and time)?

Solution: Time → energy, space → spatial momentum.

e) What is the advantage of using the interaction picture in perturbation
theory?

Solution: Fields propagate like free fields, while the time-dependence
from the interaction part of the Hamiltonian only affects states. Thus
correlation functions in an interacting theory can be expressed by the
free propagators plus perturbations.

f) What does Wick’s theorem tell you about the vacuum expectation value
of products of fields?

Solution: See P&S Sec. 4.3.

g) Why do not the disconnected diagrams contribute to the correlation
function?
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Solution: See P&S Eq. (4.31); the sum of disconnected diagrams
factor in the numerator, and the denominator gives the same sum of
disconnected diagrams. Thus they cancel. (see p. 96–98)

h) The S matrix is defined as the overlap between in- and out-states. Are
the in-state and/or out-state eigenstates of the Hamiltonian H? Of the
free-field Hamiltonian H0?

Solution: Single-particle momentum states are eigenstates of the full
Hamiltonian H (not, in general, of the free one H0). Multi-particle
combinations of such states are not eigenstates of H, since the higher-
order terms essentially rotate the single-momentum eigenstates into one
another. They will not in general be eigenstates of H0 either.

i) How can you obtain the S matrix elements from correlation functions?

Solution: LSZ formula, see P&S Sec. 7.2.

j) What are the similarities and differences between Yukawa theory and
QED?

Solution: Yukawa theory describes a fermion/antifermion pair
interacting with a scalar; in QED the scalar is replaced by a vector
(photon). Phenomenologically, as shown in the table on p. 126 in
P&S, Yukawa theory describes an attractive potential between any pair
of fermions and/or antifermions; in QED the potential between equal
charges is repulsive.

k) Why can we not quantize the photon field in the same way as fermion
and scalar fields, and how is this dealt with?

Solution: See the midterm (problem set 6); the problem is that the
photon field has an additional unphysical degree of freedom due to gauge
invariance. It is typically fixed by choosing a particular gauge.

l) Can you build a laser producing longitudinal or scalar photons?

Solution: No; as you showed in the midterm only the transverse photon
polarizations contribute to physical observables.

m) What is Ward’s identity? Mention one application of it.
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Solution: The Ward identity is the (Feynman) diagrammatic
representation of gauge invariance. An amplitude containing a photon
with momentum qµ and polarization ϵµ(q) can be written as M =
ϵµ(q)Mµ; the identity then states that qµMµ = 0. This is often
convenient when parametrizing loop corrections in terms of momenta,
since the amplitude must satisfy Ward’s identity (see e.g. the discussion
at the start of P&S Sec. 7.5).

It can also be used to argue for the replacement
∑
ϵµϵ

∗
ν → −gµν

when summing over photon polarizations.

n) Why does the photon remain massless at all orders in perturbation
theory, without the need for renormalization?

Solution: One way of seeing this is by the Ward identity; as argued in
P&S below Eq. 7.75 this identity guarantees that the photon propagator
maintains a pole at q2 = 0.

A more general way of seeing this, which can also be applied in
other situations, is invoking the symmetries of the Lagrangian. The
QED Lagrangian is gauge invariant, meaning that it is invariant under
the transformations Aµ(x) → Aµ(x)+

1
e∂µα(x), ψ(x) → eiα(x)ψ(x); this

is closely related to the massless nature of the photon, since a photon
mass term m2AµA

µ would not be invariant under this transformation.
Thus gauge invariance guarantees a massless photon in the Lagrangian
(in other words, its bare mass is zero). Since the Feynman rules, from
which loop corrections are computed, are derived from the Lagrangian,
Feynman diagrams to all orders must also satisfy gauge invariance.
Therefore the photon will remain massless to all orders in perturbation
theory, since all diagrams satisfy a symmetry that does not allow any
photon mass.

o) Explain how infrared divergences occur, and how they are canceled.

Solution: Infrared (IR) divergences appear in the low-energy limit of
expressions with negative mass dimension, i.e. expressions of the form
∼ 1/kn (as an aside, they can usually be categorized as collinear, coming
from the emission of a massless particle in the same direction as the
original particle — or soft, originating from the emission of very low-
energy particles).

They usually cancel when all processes that can contribute to the
same observed final state are taken into account. For example, the IR
divergences of 2 → 2 scattering at 1-loop order are canceled by adding
the cross-section for 2 → 3 scattering in the limit where the third particle
is either so low-energy or so close to one of the other final-state particles
that it does not register as a separate particle in the detector.

p) Explain the main idea behind renormalization. Specialize the discussion
to the case of mass and electric charge.
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Solution: Ultraviolet (UV) divergences can be absorbed into the
parameters in the Lagrangian by re-defining (or renormalizing) them in
terms of physical observables. This exploits the fact that the parameters
of the Lagrangian are not directly measurable, thus they can freely be
defined to contain divergences that cancel those divergences that appear
in loop integrals.

In QED, this is used to define the physical mass of the electron
in terms of the pole of its propagator, and the electron charge as the
strength of long-range (low-energy) electromagnetic interactions.


