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Problem set 1

Problem 1 Units (J. Skaar)

We will work in units where c = 1, ℏ = 1, ε0 = 1. Clearly, it is trivial to
transform expressions from SI units, simply by setting c = 1, ℏ = 1, ε0 = 1.
In the SI system,

c = 299792458ms−1, (1a)

ℏ = 6.62607015× 10−34

2π
kg m2s−1, (1b)

ε0 =
1

c2µ0
≈ 8.85× 10−12 kg−1m−3s4A2. (1c)(

µ0 = 4π × 10−7 kgm s−2A−2
)

The inverse transformation back to SI units therefore amounts to multiplying
each term in your expression by a suitable (and unique) power ciℏjεk0 for
integers i, j, k, to obtain the right SI dimension. The reason this works, is as
follows. Of these three constants, ε0 is the only one with A (ampere). Thus
k is obtained uniquely. After multiplication with εk0, we find j to obtain the
right power of kg, before finally determining i.

For example, the fine structure constant in SI units is α = e2

4πε0ℏc ≈
1/137, which in our set of units reads α = e2

4π . Going back to SI units, we
start by realizing that our desired result is supposed to be dimensionless.
Since e2

4π has dimension s2A2 in SI units, we must multiply by ε−1
0 to get

rid of the A2. However, then we have got a kg which was not supposed to
be there. This must be canceled by multiplication by ℏ−1. Counting the
powers of m and/or s, we finally realize that we must multiply by c−1 to
make the result dimensionless.

We use mass as the fundamental unit. We say that a quantity has
dimension n if the dimension is (mass)n.

a) Find the dimension n of mass, velocity, energy, time, length, action,
Lagrangian densities, electric charge.

b) Translate the equation ω = m+p2/(2m) to SI units. Here ω is frequency,
p is momentum, and m is mass.

c) What does the distance r = 1/m correspond to? Here m is the electron
mass.

Problem 2 Tensor notation (T. Bringmann, J. Van den Abeele)

This problem serves as a reminder to practice the use of tensor notation.
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a) Write the following in index notation:

• ∇S (where S is a scalar).

• ∇ ·A, ∇×A (where A is a 3D vector).

• Trace and transpose of a matrix M .

b) Prove the following 3D identities, using index notation:

• ∇ · (∇×A) = 0, where A is a 3D vector.

• ∇× (∇S) = 0, where S is a scalar.

Hint: First show that AabC
abc = 0 if A is symmetric in ab and Cabc is

antisymmetric in ab.

c) Are these equalities valid? Correct where necessary!

• ∂µx
ν = δνµ

• ∂µx
µ = 1

• ∂µxν = gµν

• ∂µx
2 = ∂

∂xµx2 = xµ, where x2 = xµx
µ

• Tα
β
γ = gβµTαµγ= gµβTαµγ

• Tα
β
β = gαµg

βαTµ
αβ

• AµBµ = AµB
µ

• Tα
β
β = Tαβ

β

d) Construct (as many as possible)

• independent Lorentz scalars from two four-vectors A and B

• independent Lorentz scalars from a rank-2 tensor T

• independent Lorentz scalars involving one (copy of a) rank-2 tensor T
and some combination of two four-vectors A and B

A scalar is here “independent” if it cannot be written as a function of the
other scalars.

Problem 3 Green’s function (L. L. Bratseth, J. Skaar)

Formally, a Green’s function G(x, y) is the inverse of a differential operator
D, in the sense that it satisfies the equation

DG(x, y) = δ(x− y). (2)

In other words G(x, y) is the solution to the differential equation with a
forcing term given by a point source. Informally, the solution to the same
differential equation with an arbitrary forcing term can be built up point by
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point by integrating the Green’s function against the forcing term. This is
equivalent to taking a superposition of solutions to the equation with point
source and adding them up to the arbitrary forcing term, which is why the
linearity of the differential operator is important. Formally, this means the
solution to an arbitrary linear differential equation with forcing term

Du(x) = f(x), (3)

is given by

u(x) =

∫
d4y G(x, y)f(y). (4)

Although the resulting integrals may be difficult or impossible to compute,
they provide an immediate solution to arbitrary linear differential equations
when possibly no solution may be found by other methods. The solution
can at the very least be computed numerically.

We restrict ourselves to translationally invariant problems, where a shift
in the source yµ 7→ yµ + aµ leads to the same shift in the solution. Then
the Green’s function can be written as a function of a single spacetime
coordinate:

DG(x− y) = δ(x− y), (5)

or, setting y = 0 (putting the source in the origin),

DG(x) = δ(x). (6)

In this exercise we are going to find the retarded solution of the following
inhomogeneous partial differential equation, called the inhomogeneous wave
equation: (

∇2 − ∂2

∂t2

)
u(x, t) = f(x, t). (7)

We are interested in the retarded Green’s function G(x, t) for this equation,
obeying the conditions

G(x, t) = 0 for t < 0, (8)

lim
|x|→∞

G(x, t) = 0, (9)

which tells you that the source does not produce anything before it starts,
and that G(x, t) dies far away from the source.

a) Show by the use of the Fourier transform that the Green’s function in
momentum-frequency space is given by

G(k, ω) =
1

ω2 − k2
, (10)

where k = |k|.
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b) The inverse transform of G(k, ω) is

G(x, t) =

∫
d3k

(2π)3
eik·x

∫
dω

2π

e−iωt

ω2 − k2
. (11)

Show that

G(x, t) =
1

(2π)3
1

ir

∫ ∞

−∞
dk k eikr

∫
dω

e−iωt

ω2 − k2
, (12)

where |x| = r. (For now we don’t specify the integration path for the ω-
integral; this is done in the next question.)

Hint: Note that G(k, ω) is spherically symmetric. Choose the
coordinate system such that x points in the z-direction.

c) Clearly the ω-integral cannot be taken along the real axis due to the two
poles in ω = ±k. Use an integration path above the poles in the complex
plane (see figure p. 30 in P&S) and the residue theorem to evaluate the
ω-integral, and show that

G(x, t) = − 1

4π|x|
δ(|x| − t). (13)

Give a physical interpretation of the result.


