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Problem set 1

Problem 1 Units (J. Skaar)

We will work in units where c = 1, ℏ = 1, ε0 = 1. Clearly, it is trivial to
transform expressions from SI units, simply by setting c = 1, ℏ = 1, ε0 = 1.
In the SI system,

c = 299792458ms−1, (1a)

ℏ = 6.62607015× 10−34

2π
kg m2s−1, (1b)

ε0 =
1

c2µ0
≈ 8.85× 10−12 kg−1m−3s4A2. (1c)(

µ0 = 4π × 10−7 kgm s−2A−2
)

The inverse transformation back to SI units therefore amounts to multiplying
each term in your expression by a suitable (and unique) power ciℏjεk0 for
integers i, j, k, to obtain the right SI dimension. The reason this works, is as
follows. Of these three constants, ε0 is the only one with A (ampere). Thus
k is obtained uniquely. After multiplication with εk0, we find j to obtain the
right power of kg, before finally determining i.

For example, the fine structure constant in SI units is α = e2

4πε0ℏc ≈
1/137, which in our set of units reads α = e2

4π . Going back to SI units, we
start by realizing that our desired result is supposed to be dimensionless.
Since e2

4π has dimension s2A2 in SI units, we must multiply by ε−1
0 to get

rid of the A2. However, then we have got a kg which was not supposed to
be there. This must be canceled by multiplication by ℏ−1. Counting the
powers of m and/or s, we finally realize that we must multiply by c−1 to
make the result dimensionless.

We use mass as the fundamental unit. We say that a quantity has
dimension n if the dimension is (mass)n.

a) Find the dimension n of mass, velocity, energy, time, length, action,
Lagrangian densities, electric charge.

Solution: Mass clearly has n = 1, velocity n = 0 (since c = 1), energy
n = 1 (consider e.g. E = mc2 with c = 1), time n = −1 (recall that ℏω
is energy, and ℏ = 1), length has same dimension as time since c = 1,
action n = 0, Lagrangian densities n = 4, electric charge n = 0 (see
expression for the fine structure constant).

b) Translate the equation ω = m+p2/(2m) to SI units. Here ω is frequency,
p is momentum, and m is mass.
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Solution: The second term on the right-hand side has dimension energy
in SI units, so we translate the equation to SI units by multiplying the
left-hand side by ℏ and the first term on the right-hand side by c2.

c) What does the distance r = 1/m correspond to? Here m is the electron
mass.

Solution: Answer in SI units: r = ℏ/(mc), i.e. the Compton
wavelength divided by 2π.

Problem 2 Tensor notation (T. Bringmann, J. Van den Abeele)

This problem serves as a reminder to practice the use of tensor notation.

a) Write the following in index notation:

• ∇S (where S is a scalar).

• ∇ ·A, ∇×A (where A is a 3D vector).

• Trace and transpose of a matrix M .

Solution:

• (∇S)i = ∂iS

• ∇ ·A = ∂iA
i

• (∇×A)i = ϵijk∂jAk

• Tr(M) = Mii

• (Mij)
T = Mji

b) Prove the following 3D identities, using index notation:

• ∇ · (∇×A) = 0, where A is a 3D vector.

• ∇× (∇S) = 0, where S is a scalar.

Hint: First show that AabC
abc = 0 if A is symmetric in ab and Cabc is

antisymmetric in ab.

Solution: If Aab is a symmetric tensor (Aab = Aba), and B
antisymmetric (Bab = −Bba), then

AabB
ab = AbaB

ab = −AbaB
ba = −AabB

ab.
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In the last equality we renamed the indices (a 7→ b and b 7→ a), which
of course is ok since the indices are summed over. Thus we have

AabB
ab = 0.

The same argument can be used to show that AabC
abc = 0 if A is

symmetric in ab and Cabc is antisymmetric in ab (or vice versa). We can
now prove the vector identities in one line:

• ∂i(ϵ
ijk∂jAk) = ϵijk∂i∂jAk = 0,

due to symmetry ∂i∂j and antisymmetry of ϵijk.

• ϵijk∂j(∂kS) = 0,
due to symmetry of ∂j∂k and antisymmetry of ϵijk.

c) Are these equalities valid? Correct where necessary!

• ∂µx
ν = δνµ

• ∂µx
µ = 1

• ∂µxν = gµν

• ∂µx
2 = ∂

∂xµx2 = xµ, where x2 = xµx
µ

• Tα
β
γ = gβµTαµγ= gµβTαµγ

• Tα
β
β = gαµg

βαTµ
αβ

• AµBµ = AµB
µ

• Tα
β
β = Tαβ

β

Solution:

• Right: ∂µx
ν = ∂xν

∂xµ = δνµ

• Wrong: ∂µx
µ = δµν ∂µx

ν = δµν δνµ = δµµ = 4

• Right: ∂µxν = gµρ∂ρx
ν = gµρδνρ = gµν

• Wrong: Rename the summation index to avoid confusion: x2 =
xαx

α. Then ∂µx
2 = ∂

∂xµxαx
α = gαβ

∂
∂xµxαxβ = gαβ(δ

α
µx

β +

xαδβµ) = 2xµ

• Right: using the symmetry of the metric, gµν = gνµ

• Wrong: Tα
β
β = gαµg

βνTµ
νβ = gβνTανβ

• Right: AµBµ = gµαAαBµ = AαB
α

• Right: Tα
β
β = gβγTα

βγ = Tαγ
γ
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d) Construct (as many as possible)

• independent Lorentz scalars from two four-vectors A and B

• independent Lorentz scalars from a rank-2 tensor T

• independent Lorentz scalars involving one (copy of a) rank-2 tensor T
and some combination of two four-vectors A and B

A scalar is here “independent” if it cannot be written as a function of the
other scalars.

Solution:

• A2 = AµAµ, B2 = BµBµ, AB = AµBµ (no free indices!)

• TµνTµν , TµνTνµ, Tµ
µ, Tµ

νT
ν
ρT

ρ
µ, Tµ

νT
ν
ρT

ρ
λT

λ
µ, . . . (no free

indices!)

Note however that the list of independent scalars is still finite, as
the number of components of T is finite.

• TµνAµBν , TµνBµAν , Tµ
µA

νBν (no free indices!)

Problem 3 Green’s function (L. L. Bratseth, J. Skaar)

Formally, a Green’s function G(x, y) is the inverse of a differential operator
D, in the sense that it satisfies the equation

DG(x, y) = δ(x− y). (2)

In other words G(x, y) is the solution to the differential equation with a
forcing term given by a point source. Informally, the solution to the same
differential equation with an arbitrary forcing term can be built up point by
point by integrating the Green’s function against the forcing term. This is
equivalent to taking a superposition of solutions to the equation with point
source and adding them up to the arbitrary forcing term, which is why the
linearity of the differential operator is important. Formally, this means the
solution to an arbitrary linear differential equation with forcing term

Du(x) = f(x), (3)

is given by

u(x) =

∫
d4y G(x, y)f(y). (4)

Although the resulting integrals may be difficult or impossible to compute,
they provide an immediate solution to arbitrary linear differential equations
when possibly no solution may be found by other methods. The solution
can at the very least be computed numerically.

We restrict ourselves to translationally invariant problems, where a shift
in the source yµ 7→ yµ + aµ leads to the same shift in the solution. Then
the Green’s function can be written as a function of a single spacetime
coordinate:

DG(x− y) = δ(x− y), (5)
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or, setting y = 0 (putting the source in the origin),

DG(x) = δ(x). (6)

In this exercise we are going to find the retarded solution of the following
inhomogeneous partial differential equation, called the inhomogeneous wave
equation: (

∇2 − ∂2

∂t2

)
u(x, t) = f(x, t). (7)

We are interested in the retarded Green’s function G(x, t) for this equation,
obeying the conditions

G(x, t) = 0 for t < 0, (8)

lim
|x|→∞

G(x, t) = 0, (9)

which tells you that the source does not produce anything before it starts,
and that G(x, t) dies far away from the source.

a) Show by the use of the Fourier transform that the Green’s function in
momentum-frequency space is given by

G(k, ω) =
1

ω2 − k2
, (10)

where k = |k|.

Solution: We look for the solution to(
∇2 − ∂2

∂t2

)
G(x, t) = δ(x)δ(t); (11)

i.e., G is the inverse of the differential operator (∇2 − ∂2
t ), which is

just the d’Alembertian. By Fourier transforming in space and time, we
obtain

(−k2 + ω2
)
G(k, ω) = 1, (12)

where G(k, ω) is the Fourier transform of G(x, t). Thus the Green’s
function in momentum-frequency space is given by

G(k, ω) =
1

ω2 − k2
. (13)

Note that there are poles for ω = ±k.

b) The inverse transform of G(k, ω) is

G(x, t) =

∫
d3k

(2π)3
eik·x

∫
dω

2π

e−iωt

ω2 − k2
. (14)

Show that

G(x, t) =
1

(2π)3
1

ir

∫ ∞

−∞
dk k eikr

∫
dω

e−iωt

ω2 − k2
, (15)

where |x| = r. (For now we don’t specify the integration path for the ω-
integral; this is done in the next question.)
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Hint: Note that G(k, ω) is spherically symmetric. Choose the
coordinate system such that x points in the z-direction.

Solution: Change to polar coordinates for the integrals over k. This
allows us to deal with the eik·x factor. To this end we may choose the
coordinate system such that x points in the z-direction:

k · x = kr cos θ, |k| = k, |x| = r. (16)

Then the Green’s function becomes

G(x, t) =
1

(2π)4

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dk k2

∫
dω

ei(kr cos θ−ωt)

ω2 − k2
. (17)

Let us first focus on the following part

I =

∫ ∞

0
dk k2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

eikr cos θ

ω2 − k2
(18)

Now the ϕ integral is trivial, while the θ integral is∫ π

0
dθ sin θeikr cos θ =

∫ 1

−1
du eikru =

1

ikr

(
eikr − e−ikr

)
. (19)

Then

I =
2π

ir

∫ ∞

0
dk

k

ω2 − k2

(
eikr − e−ikr

)
=

2π

ir

(∫ ∞

0
dk

k

ω2 − k2
eikr +

∫ 0

∞
dk

k

ω2 − k2
e−ikr

)
=

2π

ir

(∫ ∞

0
dk

k

ω2 − k2
eikr +

∫ 0

−∞
dk

k

ω2 − k2
eikr

)
=

2π

ir

∫ ∞

−∞
dk

k

ω2 − k2
eikr (20)

where we in the second step sent k → −k in the second integral.
Plugging this back into the Green’s function we obtain

G(x, t) =
1

(2π)3
1

ir

∫ ∞

−∞
dk k eikr

∫
dω

e−iωt

ω2 − k2
. (21)

c) Clearly the ω-integral cannot be taken along the real axis due to the two
poles in ω = ±k. Use an integration path above the poles in the complex
plane (see figure p. 30 in P&S) and the residue theorem to evaluate the
ω-integral, and show that

G(x, t) = − 1

4π|x|
δ(|x| − t). (22)

Give a physical interpretation of the result.
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Solution: First consider t > 0. Since e−iωt blows up in the upper half-
plane, we close the contour in the lower half plane. Then, the integration
along the half-circle tends to zero as the radius R → ∞:∣∣∣∣∫

half circle
dω

e−iωt

ω2 − k2

∣∣∣∣ ≤ ∫
half circle

∣∣∣∣dω 1

ω2 − k2

∣∣∣∣ ≤ πR
1

R2 − k2
→ 0.

Both poles (at ω = ±k) are enclosed by the contour, and the residue
theorem gives∫

dω
e−iωt

(ω − k)(ω + k)
= −2πi

e−ikt

2k
+ 2πi

eikt

2k
. (23)

Inserting this result back into (21), we obtain

G(x, t) = − 1

4πr

∫ ∞

−∞

dk

2π
eik(r−t) +

1

4πr

∫ ∞

−∞

dk

2π
eik(r+t) = − 1

4πr
δ(r − t),

(24)

where we have used t > 0 in the last equality. For t < 0 we close the
contour in the upper half-plane, which leads to the result G(x, t) = 0.

The Green’s function is the response to a point source in the origin
with an impulse at t = 0. The source leads to a short spherical wave
pulse propagating in the +r-direction, but decaying as 1/r. This is
similar to throwing a stone in the water and observing the circular wave
pulse propagating away.

The Green’s functions we will encounter in the course has the fitting
name propagators.

For the interested student: One may ask why the chosen integration
path is the correct path for the inverse transform, given requirement (8).
We do the analysis more rigorously as follows.

The appearance of poles at the real ω-axis shows that the Fourier
transform of G(x, t) does not exist everywhere. We therefore define
H(x, t) = G(x, t)e−ϵt (for ϵ > 0), which clearly is Fourier transformable.
[Recall the assumption G(x, t) = 0 for t < 0 (which must be verified in
the end).] We have

G(x, t) = H(x, t)eϵt, (25)

and therefore

∂2
tG(x, t) = eϵt

(
∂2
t + 2ϵ∂t + ϵ2

)
H(x, t). (26)

Our differential equation (11) now becomes

eϵt
(
∇2 − ∂2

t − 2ϵ∂t − ϵ2
)
H(x, t) = δ(x)δ(t). (27)

Multiplication by e−ϵt on both sides gives(
∇2 − ∂2

t − 2ϵ∂t − ϵ2
)
H(x, t) = δ(x)δ(t). (28)

Since the Fourier transform of H (and the derivatives) exists, we may
Fourier transform the equation:(

−k2 + ω2 + 2iωϵ− ϵ2
)
H(k, ω) = 1. (29)
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The solution is

H(k, ω) =
1

(ω + iϵ)2 − k2
, (30)

with poles in ω = ±k − iϵ.
The inverse Fourier transform involves integration along the real ω-

axis. For t > 0 we close the contour in the lower half-plane, picking
up both residues. This shows that we used the correct integration path
above. For t < 0 we must close the contour in the upper half-plane,
leading to H(x, t) = 0 and therefore G(x, t) = 0 as before.

It is interesting to note that we did not have to take the limit ϵ → 0;
the result is obtained using any ϵ > 0.

An equivalent and simpler argument, is to use the Laplace transform
in time rather than the Fourier transform. The analysis can then be
done directly on G (we don’t need H). After finding the solution in
the Laplace transform domain, the solution in time, for t > 0, is found
by the inverse Laplace transform. Since the inverse Laplace transform
amounts to including both residues, we get the same result as above.


