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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 2

Problem 1 Two scalar fields (T. Bringmann)

Consider two interacting, real, scalar fields ϕ1 and ϕ2, described by the
following Lagrangian:

L =
1

2
(∂µϕ1)(∂

µϕ1)−
1

2
m2

1ϕ
2
1 +

1

2
(∂µϕ2)(∂

µϕ2)−
1

2
m2

2ϕ
2
2 − λϕ2

1ϕ
2
2 , (1)

where λ is a constant.
Derive the equations of motion for the theory (1). Do so by directly

using the principle of least action (by varying the fields), i.e., not by using
the Euler-Lagrange equations. Give an explanation of why the boundary
terms do not contribute in your result, and discuss the relation to the Klein-
Gordon-equation(s) you would expect for non-interacting fields.

Problem 2 Obtaining ladder operators from fields
(J. Skaar)

a) The hermitian Klein-Gordon field ϕ(x) and its canonical momentum
density π(x) are

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipx + a†pe
ipx

)
, (2a)

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape

−ipx − a†pe
ipx

)
, (2b)

where p0 = Ep =
√

p2 +m2. Find a method to invert these relations; thus

obtaining the ladder operators ap and a†p from ϕ(x) and π(x).

Hint: Set t = x0 = 0, and try to write the expressions as Fourier
transforms by changing integration variable in one of the terms for each
field.

b) By requiring equal-time commutators [ϕ(x), π(y)] = iδ(x − y), show
that we must have

[ap, a
†
q] = (2π)3δ(p− q), (3a)

[ap, aq] = 0. (3b)

Hint: Follows from the result in a), after determining [ϕ(p), π†(q)] and
[ϕ(p), π(q)] (the commutator of the Fourier transformed fields).
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c) Prove that

ap = i

∫
d3xΨ∗

p(x)
↔
∂ 0ϕ(x) (4)

for x0 = 0. Here we have defined

Ψp(x) =
1√
2Ep

e−ipx, p0 = Ep =
√
p2 +m2. (5)

and the symbol
↔
∂ 0, which operates “in both directions”:

f
↔
∂ 0g = f∂0g − (∂0f)g. (6)

We will use expression (4) later in the course, when discussing the important
LSZ formula.

Hint: Substitute (5) and compare to the result in a).

Problem 3 The complex Klein-Gordon field (Peskin

& Schroeder exercise 2.2, modified)

This problem considers the quantization of a complex, scalar field. It is both
a good recap on how we quantized the real scalar field, and at the same
time needs concepts that we meet when quantizing fermions (in particular
the necessary appearance of anti-particles). The Lagrangian is

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ.

It is easiest to analyze this theory by considering ϕ and ϕ∗ (rather than the
real and imaginary parts) as the independent, dynamical variables.

a) Show that the Hamilton operator is given by

H =

∫
d3x

(
π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ

)
b) Compared to the real case, the theory exhibits an additional symmetry,
ϕ 7→ e−iαϕ. Show that this is indeed a symmetry, and user Noether’s
theorem to show that the corresponding conserved charge is proportional
to

Q = −i

∫
d3x(ϕ̇∗ϕ− ϕ∗ϕ̇). (7)

Hint: A similar calculation has already been done in the lectures.

So far we have considered the classical fields ϕ and ϕ∗. We now quantize
the theory, by promoting the fields to operators ϕ and ϕ†, respectively.
Similarly, the canonical momentum densities are π and π†. Complex
conjugation (∗) in the classical expressions above must therefore be replaced
by hermitian conjugate (†).
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We require

[ϕ(x), π(y)] = iδ(3)(x− y),

[ϕ†(x), π†(y)] = iδ(3)(x− y),
(8)

while

[ϕ(x), ϕ(y)] = 0 = [π(x), π(y)],

[ϕ(x), ϕ†(y)] = 0 = [π(x), π†(y)],

[ϕ(x), π†(y)] = 0 = [π(x), ϕ†(y)].

(9)

c) In the Heisenberg picture the fields evolve according to the Heisenberg
equations of motion,

i
∂ϕ(x)

∂t
= [ϕ(x), H] (10a)

i
∂π(x)

∂t
= [π(x), H]. (10b)

Prove that ϕ and π satisfy the following Hamilton’s equations of motion:

∂ϕ(x)

∂t
= π†(x), (11a)

∂π(x)

∂t
= (∇2 −m2)ϕ†(x). (11b)

From these deduce that ϕ satisfies the Klein-Gordon equation.

d) Introduce annihilation and creation operators, and show that

H =

∫
d3p

(2π)3
Ep(a

†
pap + b†pbp) (12)

if we ignore an infinite constant (as before). Here you should convince
yourself that the Fourier decomposition of a complex function ϕ(x), already
at the classical level, requires twice as many independent Fourier coefficients
as for a real function. When promoted to operators, you should thus denote
those with, e.g., ak and b†k (rather than ak and a†k).

Argue that the theory contains two types of particles with mass m.

e) Rewrite the conserved charge (7) in terms of the annihilation and
creation operators introduced above. How does the charge between the
two types of particles differ?

Problem 4 Complex fields (optional; for the interested student)

(J. Skaar)

In the lectures, and above, we have treated ϕ and ϕ∗ as independent. We
will now justify this method, which is far from obvious, since ϕ∗ in fact is
uniquely determined by ϕ.

We write
ϕ = ϕr + iϕi, (13)
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where ϕr and ϕi are the real and imaginary parts of ϕ, respectively. Clearly,
we may treat ϕr and ϕi as independent fields, that can be varied separately
to obtain Euler-Lagrange equations for ϕr and ϕi.

Instead of ϕr and ϕi as independent “coordinates” in the complex ϕ-
plane, let us fix ϕ0, and use real parameters s and t to express

ϕr =
1

2
[sϕ0 + tϕ∗

0] , (14a)

ϕi =
1

2i
[sϕ0 − tϕ∗

0] , (14b)

or

sϕ0 = ϕr + iϕi, (15a)

tϕ∗
0 = ϕr − iϕi, (15b)

This gives

1

ϕ0

∂

∂s
=

∂

∂(sϕ0)
=

1

2

[
∂

∂ϕr
− i

∂

∂ϕi

]
, (16a)

1

ϕ∗
0

∂

∂t
=

∂

∂(tϕ∗
0)

=
1

2

[
∂

∂ϕr
+ i

∂

∂ϕi

]
. (16b)

We therefore write

∂

∂ϕ
=

1

2

[
∂

∂ϕr
− i

∂

∂ϕi

]
, (17a)

∂

∂ϕ∗ =
1

2

[
∂

∂ϕr
+ i

∂

∂ϕi

]
, (17b)

but have in mind that they actually mean (16). For example, ∂
∂ϕ means that

one varies sϕ0 while holding tϕ∗
0 constant.

a) Prove that ∂ϕ
∂ϕ = ∂ϕ∗

∂ϕ∗ = 1 and ∂ϕ
∂ϕ∗ = ∂ϕ∗

∂ϕ = 0.

b) Argue that the Euler-Lagrange equations

∂L
∂ϕr

− ∂µ
∂L

∂(∂µϕr)
= 0, (18a)

∂L
∂ϕi

− ∂µ
∂L

∂(∂µϕi)
= 0, (18b)

imply

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0, (19a)

∂L
∂ϕ∗ − ∂µ

∂L
∂(∂µϕ∗)

= 0. (19b)

Hint: Consider 1
2 [(18a) − i(18b)]. Note that (17) can be applied to

identify what ∂
∂(∂µϕ)

means, by thinking of (∂µϕ) as the complex field

rather than ϕ.
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c) Go through the derivation of Noether’s theorem, and convince yourself
that the method of treating ϕ and ϕ∗ as independent fields gives the same
result as if you consider ϕr and ϕi as the independent fields.

Hint: From the above, we know that the Euler-Lagrange equations for ϕ
and ϕ∗ are satisfied (19). Following the usual proof, assuming that ϕ and
ϕ∗ are independent fields we can express the change in the Lagrangian
as

∆L = ∂µ

(
∂L

∂(∂µϕ)
∆ϕ+

∂L
∂(∂µϕ∗)

∆ϕ∗
)
. (20)

Show that (20) can be rewritten to

∆L = ∂µ

(
∂L

∂(∂µϕr)
∆ϕr +

∂L
∂(∂µϕi)

∆ϕi

)
. (21)


