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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 2

Problem 1 Two scalar fields (T. Bringmann)

Consider two interacting, real, scalar fields ϕ1 and ϕ2, described by the
following Lagrangian:

L =
1

2
(∂µϕ1)(∂

µϕ1)−
1

2
m2

1ϕ
2
1 +

1

2
(∂µϕ2)(∂

µϕ2)−
1

2
m2

2ϕ
2
2 − λϕ2

1ϕ
2
2 , (1)

where λ is a constant.
Derive the equations of motion for the theory (1). Do so by directly

using the principle of least action (by varying the fields), i.e., not by using
the Euler-Lagrange equations. Give an explanation of why the boundary
terms do not contribute in your result, and discuss the relation to the Klein-
Gordon-equation(s) you would expect for non-interacting fields.

Solution: We consider the two real scalar fields ϕi (i = 1, 2) as
independent. Under a change of one of them, say ϕ1 → ϕ1 + δϕ1, the
Lagrangian changes as L → L+ δL with

δL = (∂µϕ1)(∂
µδϕ1)−m2

1ϕ1δϕ1 − 2λϕ1ϕ
2
2δϕ1,

where we used the fact that δ(∂µϕ1) = ∂µ(ϕ1 + δϕ1) − ∂µ(ϕ1) =
∂µ(δϕ1). The first term can be rewritten to ∂µ[(∂µϕ1)δϕ1] − □ϕ1(δϕ1).
After substitution into the action integral δS =

∫
d4x δL, the term

∂µ[(∂µϕ1)δϕ1] leads to a surface integral of ∂µϕ1(δϕ1), by the divergence
theorem in four dimensions. Thus if we restrict ourselves to variations
δϕi that vanish at the boundaries, we can ignore the term.

This gives

δS = −
∫

d4x[□ϕ1 +m2
1ϕ1 + 2λϕ1ϕ

2
2]δϕ1.

Requiring δS to vanish for an arbitrary variation δϕ1 leads to the
equation of motion (EOM) for ϕ1:

□ϕ1 +m2
1ϕ1 + 2λϕ1ϕ

2
2 = 0.

As the Lagrangian is symmetric under the interchange of field labels
1 ↔ 2, the EOM for ϕ2 immediately follows:

□ϕ2 +m2
2ϕ2 + 2λϕ2

1ϕ2 = 0.

The Lagrangian term −λϕ2
1ϕ

2
2 couples the two fields, leading to

ϕ2 showing up in the EOM for ϕ1 and vice versa, meaning that they
interact. Klein-Gordon equations for both fields are retrieved in the
limit where the coupling vanishes (λ → 0).
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Problem 2 Obtaining ladder operators from fields
(J. Skaar)

a) The hermitian Klein-Gordon field ϕ(x) and its canonical momentum
density π(x) are

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipx + a†pe
ipx

)
, (2a)

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape

−ipx − a†pe
ipx

)
, (2b)

where p0 = Ep =
√

p2 +m2. Find a method to invert these relations; thus

obtaining the ladder operators ap and a†p from ϕ(x) and π(x).

Hint: Set t = x0 = 0, and try to write the expressions as Fourier
transforms by changing integration variable in one of the terms for each
field.

Solution: We set t = x0 = 0, change integration variable p 7→ −p in
the last terms, and use E−p = Ep:

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ap + a†−p

)
eip·x, (3a)

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ap − a†−p

)
eip·x. (3b)

If ϕ(p) and π(p) are the Fourier transforms of ϕ(x) and π(x),
respectively, (3) shows that

ϕ(p) =
1√
2Ep

(
ap + a†−p

)
, (4a)

π(p) = −i

√
Ep

2

(
ap − a†−p

)
, (4b)

or

ap =

√
Ep

2
ϕ(p) +

i√
2Ep

π(p), (5a)

a†p =

√
Ep

2
ϕ†(p)− i√

2Ep

π†(p). (5b)

Thus we can find the ladder operators from the fields by setting x0 = 0,
Fourier transform them, and plugging into (5). (Note that even though
ϕ(x) and π(x) are hermitian (corrsponding to real, classical fields), the
Fourier transformed fields ϕ(p) and π(p) are not necessarily hermitian.)



FYS4170/9170 Problem set 2 Page 3

b) By requiring equal-time commutators [ϕ(x), π(y)] = iδ(x − y), show
that we must have

[ap, a
†
q] = (2π)3δ(p− q), (6a)

[ap, aq] = 0. (6b)

Hint: Follows from the result in a), after determining [ϕ(p), π†(q)] and
[ϕ(p), π(q)] (the commutator of the Fourier transformed fields).

c) Prove that

ap = i

∫
d3xΨ∗

p(x)
↔
∂ 0ϕ(x) (7)

for x0 = 0. Here we have defined

Ψp(x) =
1√
2Ep

e−ipx, p0 = Ep =
√
p2 +m2. (8)

and the symbol
↔
∂ 0, which operates “in both directions”:

f
↔
∂ 0g = f∂0g − (∂0f)g. (9)

We will use expression (7) later in the course, when discussing the important
LSZ formula.

Hint: Substitute (8) and compare to the result in a).

Problem 3 The complex Klein-Gordon field (Peskin

& Schroeder exercise 2.2, modified)

This problem considers the quantization of a complex, scalar field. It is both
a good recap on how we quantized the real scalar field, and at the same
time needs concepts that we meet when quantizing fermions (in particular
the necessary appearance of anti-particles). The Lagrangian is

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ.

It is easiest to analyze this theory by considering ϕ and ϕ∗ (rather than the
real and imaginary parts) as the independent, dynamical variables.

a) Show that the Hamilton operator is given by

H =

∫
d3x

(
π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ

)
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Solution: Starting with the Lagrangian density

L = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ = ∂0ϕ

∗∂0ϕ−∇ϕ∗ · ∇ϕ−m2ϕ∗ϕ, (10)

we find the conjugate momenta:

π =
∂L
∂∂0ϕ

= ∂0ϕ
∗

π∗ =
∂L

∂∂0ϕ∗ = ∂0ϕ

(11)

From these expressions we can calculate the Hamiltonian density:

H = Σπiϕ̇i − L
= ππ∗ + π∗π − (ππ∗ −∇ϕ∗ · ∇ϕ−m2ϕ∗ϕ)

= π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ,

(12)

and thus the Hamiltonian is H =
∫
d3x (π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ).

b) Compared to the real case, the theory exhibits an additional symmetry,
ϕ 7→ e−iαϕ. Show that this is indeed a symmetry, and user Noether’s
theorem to show that the corresponding conserved charge is proportional
to

Q = −i

∫
d3x(ϕ̇∗ϕ− ϕ∗ϕ̇). (13)

Hint: A similar calculation has already been done in the lectures.

So far we have considered the classical fields ϕ and ϕ∗. We now quantize
the theory, by promoting the fields to operators ϕ and ϕ†, respectively.
Similarly, the canonical momentum densities are π and π†. Complex
conjugation (∗) in the classical expressions above must therefore be replaced
by hermitian conjugate (†).

We require

[ϕ(x), π(y)] = iδ(3)(x− y),

[ϕ†(x), π†(y)] = iδ(3)(x− y),
(14)

while

[ϕ(x), ϕ(y)] = 0 = [π(x), π(y)],

[ϕ(x), ϕ†(y)] = 0 = [π(x), π†(y)],

[ϕ(x), π†(y)] = 0 = [π(x), ϕ†(y)].

(15)

c) In the Heisenberg picture the fields evolve according to the Heisenberg
equations of motion,

i
∂ϕ(x)

∂t
= [ϕ(x), H] (16a)

i
∂π(x)

∂t
= [π(x), H]. (16b)
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Prove that ϕ and π satisfy the following Hamilton’s equations of motion:

∂ϕ(x)

∂t
= π†(x), (17a)

∂π(x)

∂t
= (∇2 −m2)ϕ†(x). (17b)

From these deduce that ϕ satisfies the Klein-Gordon equation.

Solution:

i
∂ϕ(x)

∂t
= [ϕ(x), H] =

[
ϕ(x),

∫
d3y (π†π +∇ϕ† · ∇ϕ+m2ϕ†ϕ)

]
=

∫
d3y [ϕ(x), π(y)]π†(y)

=

∫
d3y (iδ(3)(x− y))π†(y)

= iπ†(x). (18)

Here we used the fact that ϕ commute with all terms in H, except π.
To derive the next Hamilton equation, it is useful to note that

H =

∫
d3y (π†π +∇(ϕ∇ϕ†)− ϕ∇2ϕ† +m2ϕ†ϕ). (19)

Here the second term can be written as a surface integral of ϕ∇ϕ†. After
substitution into

i
∂π(x)

∂t
= [π(x), H] (20)

the first two terms of H can be ignored; the first because π commutes
with π†π, and the second because we may take the surface integral
sufficiently far out, away from x, which ensures that the commutator
vanishes. The last two terms lead to terms proportional to a delta
function, which after integration give

i
∂π(x)

∂t
= i(∇2ϕ† −m2ϕ†). (21)

By combining (18) and (21) we obtain the Klein-Gordon equation of
motion:

∂2ϕ(x)

dt2
−∇2ϕ(x) +m2ϕ(x) = 0. (22)

d) Introduce annihilation and creation operators, and show that

H =

∫
d3p

(2π)3
Ep(a

†
pap + b†pbp) (23)

if we ignore an infinite constant (as before). Here you should convince
yourself that the Fourier decomposition of a complex function ϕ(x), already
at the classical level, requires twice as many independent Fourier coefficients
as for a real function. When promoted to operators, you should thus denote
those with, e.g., ak and b†k (rather than ak and a†k).

Argue that the theory contains two types of particles with mass m.
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Solution: We start by introducing creation and annihilation operators
for the field ϕ, noting now that ϕ is no longer hermitian (ϕ ̸= ϕ†).
Therefore, we cannot assume that the coefficient of eip·x is just the
adjoint of that of e−ip·x. We are thus forced to introduce two sets of
operators, ap and b†p:

ϕ(x) =

∫
d3p

(2π)3
√
2Ep

(ape
−ip·x + b†pe

ip·x)
∣∣∣
p0=Ep

ϕ†(x) =

∫
d3p

(2π)3
√
2Ep

(a†pe
ip·x + bpe

−ip·x)
∣∣∣
p0=Ep

π(x) = ϕ̇†(x) =

∫
d3p

(2π)3
√
2Ep

(iEpa
†
pe

ip·x − iEpbpe
−ip·x)

∣∣∣
p0=Ep

π†(x) = ϕ̇(x) =

∫
d3p

(2π)3
√
2Ep

(−iEpape
−ip·x + iEpb

†
pe

ip·x)
∣∣∣
p0=Ep

(24)

The Hamiltonian must be independent of time (why?), so we set x0 = 0.
Plugging into the Hamiltonian,

H =

∫
d3x(π†π +∇ϕ† · ∇ϕ+m2ϕ†ϕ)

=

∫
d3x

∫
d3p

(2π)3
√
2Ep

(−iEpape
ip·x + iEpb

†
pe

−ip·x)

·
∫

d3q

(2π)3
√
2Eq

(iEqa
†
qe

−iq·x − iEqbqe
iq·x)

+

∫
d3x

∫
d3p

(2π)3
√
2Ep

(ipa†pe
−ip·x − ipbpe

ip·x)

·
∫

d3q

(2π)3
√
2Eq

(−iqaqe
iq·x + iqb†qe

−iq·x)

+m2

∫
d3x

∫
d3p

(2π)3
√
2Ep

(a†pe
−ip·x + bpe

ip·x)

·
∫

d3q

(2π)3
√
2Eq

(aqe
iq·x + b†qe

−iq·x).

(25)

Performing the
∫
d3x integral yields a delta function, which collapses

the integration with respect to q. After a little work this leads to

H =

∫
d3p

(2π)3
Ep(a

†
pap + bpb

†
p) =

∫
d3p

(2π)3
Ep(a

†
pap + b†pbp). (26)

For the last equality, we dropped an infinite constant. In such
calculations it is also useful to note that E−p = Ep =

√
p2 +m2, and

it may be helpful to use the substitution −p 7→ p in some integrals.
The final expression is exactly as for the real (or hermitian) Klein-

Gordon field, except that now there are two (number operator) terms

a†pap and b†pbp. As observables these count the number of “a” and “b”
particles in mode p.

From (14) and (15) it is possible to obtain the usual ladder operator
commutators for ap, and for bp, and that all commutators between
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ap and bp operators vanish. Thus we must consider the “a” and “b”
excitations as different particles.

e) Rewrite the conserved charge (13) in terms of the annihilation and
creation operators introduced above. How does the charge between the
two types of particles differ?

Solution: Starting from the expression found in b), plugging in field
expressions and using commutation relations, we find after some work

Q =

∫
d3p

(2π)3
(a†pap − b†pbp). (27)

Note how particles created by the a† and b† operators get opposite
charge!

Problem 4 Complex fields (optional; for the interested student)

(J. Skaar)

In the lectures, and above, we have treated ϕ and ϕ∗ as independent. We
will now justify this method, which is far from obvious, since ϕ∗ in fact is
uniquely determined by ϕ.

We write
ϕ = ϕr + iϕi, (28)

where ϕr and ϕi are the real and imaginary parts of ϕ, respectively. Clearly,
we may treat ϕr and ϕi as independent fields, that can be varied separately
to obtain Euler-Lagrange equations for ϕr and ϕi.

Instead of ϕr and ϕi as independent “coordinates” in the complex ϕ-
plane, let us fix ϕ0, and use real parameters s and t to express

ϕr =
1

2
[sϕ0 + tϕ∗

0] , (29a)

ϕi =
1

2i
[sϕ0 − tϕ∗

0] , (29b)

or

sϕ0 = ϕr + iϕi, (30a)

tϕ∗
0 = ϕr − iϕi, (30b)

This gives

1

ϕ0

∂

∂s
=

∂

∂(sϕ0)
=

1

2

[
∂

∂ϕr
− i

∂

∂ϕi

]
, (31a)

1

ϕ∗
0

∂

∂t
=

∂

∂(tϕ∗
0)

=
1

2

[
∂

∂ϕr
+ i

∂

∂ϕi

]
. (31b)

We therefore write

∂

∂ϕ
=

1

2

[
∂

∂ϕr
− i

∂

∂ϕi

]
, (32a)

∂

∂ϕ∗ =
1

2

[
∂

∂ϕr
+ i

∂

∂ϕi

]
, (32b)
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but have in mind that they actually mean (31). For example, ∂
∂ϕ means that

one varies sϕ0 while holding tϕ∗
0 constant.

a) Prove that ∂ϕ
∂ϕ = ∂ϕ∗

∂ϕ∗ = 1 and ∂ϕ
∂ϕ∗ = ∂ϕ∗

∂ϕ = 0.

b) Argue that the Euler-Lagrange equations

∂L
∂ϕr

− ∂µ
∂L

∂(∂µϕr)
= 0, (33a)

∂L
∂ϕi

− ∂µ
∂L

∂(∂µϕi)
= 0, (33b)

imply

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0, (34a)

∂L
∂ϕ∗ − ∂µ

∂L
∂(∂µϕ∗)

= 0. (34b)

Hint: Consider 1
2 [(33a) − i(33b)]. Note that (32) can be applied to

identify what ∂
∂(∂µϕ)

means, by thinking of (∂µϕ) as the complex field

rather than ϕ.

c) Go through the derivation of Noether’s theorem, and convince yourself
that the method of treating ϕ and ϕ∗ as independent fields gives the same
result as if you consider ϕr and ϕi as the independent fields.

Hint: From the above, we know that the Euler-Lagrange equations for ϕ
and ϕ∗ are satisfied (34). Following the usual proof, assuming that ϕ and
ϕ∗ are independent fields we can express the change in the Lagrangian
as

∆L = ∂µ

(
∂L

∂(∂µϕ)
∆ϕ+

∂L
∂(∂µϕ∗)

∆ϕ∗
)
. (35)

Show that (35) can be rewritten to

∆L = ∂µ

(
∂L

∂(∂µϕr)
∆ϕr +

∂L
∂(∂µϕi)

∆ϕi

)
. (36)


