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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 3

Problem 1 Single particles in wave packets (J. Skaar)

In this problem, you will construct single particles in wave packets and view
their propagation in space. The nonrelativistic and ultrarelativistic limits
will be examined. A final goal is to understand the definition of the S-
matrix.

Note that usually p2 means p2 = (p0)2−p2, but when we limit ourselves
to one spatial dimension, p may refer to one-dimensional momentum.

a) Our particle will be expressed as

|ψ⟩ = a†ψ |0⟩ , a†ψ =

∫
d3p

(2π)3
ψ(p)a†p, (1)

where a†p is the usual creation operator for the mode with momentum p.

Here a†ψ should be viewed as a wavepacket creation operator. We let the
wavepacket spectrum ψ(p) be normalized by∫

d3p

(2π)3
|ψ(p)|2 = 1.

Calculate [aψ, a
†
ψ], ⟨ψ|ψ⟩, and [ap, a

†
ψ].

b) One observable is the field operator itself,

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipx + a†pe
ipx

)
, p0 = Ep =

√
p2 +m2. (2)

Show that ⟨ψ|ϕ(x) |ψ⟩ = 0. This does not mean that a measurement of
the field in this state always gives zero; it may fluctuate around zero with
zero expectation value. Indeed, prove that the expectation value of the
normal-ordered (N ) observable ϕ2(x) is

⟨ψ| N
{
ϕ2(x)

}
|ψ⟩ = 2|Ψ(x)|2 , (3)

where

Ψ(x) =

∫
d3p

(2π)3
ψ(p)√
2Ep

e−ipx. (4)

Normal ordering means to put all creation operators to the left, i.e.,
N (aa†) = a†a and N (a†a) = a†a.

Note: The free field operator (2) only contains a standard, plane-wave x-
dependence. Thus, although the Heisenberg picture state |ψ⟩ is independent
of space and time, the actual space and time dependence of the particle is
encoded into |ψ⟩!

Hint: Substitute the field expression in ⟨0| aψN
{
ϕ2(x)

}
a†ψ |0⟩. Use the

commutator [ap, a
†
ψ] = ψ(p).
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c) We will now consider the expectation value |Ψ(x)|2 in more detail,
thinking of it as the “shape of the particle”. Argue that Ψ(x, t = 0) can
have any shape in space, by tailoring the wavepacket spectrum ψ(p). Choose
ψ(p)/

√
2Ep such that |Ψ(x, t = 0)|2 is a 3d gaussian centered at the point

b.

d) Peskin & Schroeder (p. 24) claims that the state

ϕ(b) |0⟩ =
∫

d3p

(2π)3
e−ip·b√
2Ep

a†p |0⟩

describes a particle at location b. (See (2.41) and (2.35).) Here ϕ(b) denotes
the field operator at position x = b and a fixed time t = 0. Note that this
state can be put in the form (1). Find ψ(p)/

√
2Ep for this state, and show

that Ψ(x, t = 0) can be expressed in the form of a Fourier integral. Argue
that the state ϕ(b) |0⟩ is not perfectly localized to a point at x = b.

e) Define a position wave function as in nonrelativistic quantum mechanics:
ψ(x) ≡ ⟨x|ψ⟩, where |x⟩ = ϕ(x) |0⟩. Show that ψ(x) is the same function as
Ψ(x) in (4).

Hint:
ψ(x) = ⟨x|ψ⟩ = ⟨0|ϕ(x)a†ψ |0⟩ .

Substitute the expression for ϕ(x) and note that [ap, a
†
ψ] = ψ(p).

f) Prove that the wave function Ψ(x) in (4) obeys the Schrödinger equation
in the nonrelativistic limit |p| ≪ m. (More precisely, we require |p| ≪ m
for all p’s contributing to the integral in (4).)

Hint: It is tempting to approximate Ep ≈ m in this limit, but then we
get a trivial time dependence e−imt, which gives no time dependence for
|Ψ(x)|2. So we need to go to the next order:

Ep = m
√

1 + p2/m2 ≈ m+ p2/2m

Then substitute in (4), ignore the trivial time dependence due to m, and
verify that (4) satisfies the Schrödringer equation.

g) Consider a particle with narrow wavepacket spectrum about some central
value p0. Let p0 point in the z-direction, and assume that the spectrum ψ(p)
only contains values for p along the z-direction. In other words, consider
the 1+1d case

Ψ(z, t) =

∫
dp

2π

ψ(p)√
2E

e−iEt+ipz, E =
√
p2 +m2.

If ψ(p)/
√
2E is a narrow gaussian spectrum centered about p = p0, make

a rough sketch of ReΨ(z, t = 0). Indicate how the width of the pulse is
related to the width of the gaussian spectrum.
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h) Still in 1+1d, we now consider the propagation of the wavepacket in the
ultrarelativistic limit p≫ m. Prove that in this case the pulse moves to the
right (in the +z-direction), with no dispersion/distortion.

i) We now consider the propagation of Ψ(z, t) in the nonrelativistic limit
p ≪ m. As before, we do not care what the overall constant is, we are
only interested in the overall shape and width of |Ψ(z, t)|2. Let ψ(p)/

√
2E

be a narrow gaussian, and use your favorite methods (by hand, or using an
algebraic or numeric computer program) to obtain rough plots of |Ψ(z, t)|2
as a function of z for a t≪ mσ2 and a t≫ mσ2. Or, since this is a little bit
boring, perhaps just search the Internet for something like “gaussian wave
packet in Schrödinger equation”. For example there is a nice Wikipedia page
“wave packet”.

What happens with the pulse as the time goes by? What is the time
t ≈ mσ2 in SI units?

j) Consider (4) in the 2+1d case

Ψ(y, z) =

∫
dpydpz
(2π)2

ψ(p)√
2Ep

e−iEpt+ipyy+ipzz. (5)

Let ψ(p)/
√

2Ep = δ(pz−p0)e
−

p2y

2(∆p)2 . How does the wave envelope |Ψ(y, z)|2
look like for t = 0? What happens if we include a factor e−ipyb in the
expression for ψ(p)/

√
2Ep?

k) In scattering experiments, which are quite central in QFT, two particles
are initially far apart, but overlap after some time. We consider 2+1d or
3+1d. Why do you think we need to assume that the particles are contained
in wavepackets? In other words, why can’t we just assume that the particles
each have a single momentum, p1 and p2?

l) Still, in scattering experiments the wavepackets have usually narrow
momentum spectra such that they are much like plane waves. More precisely,
|∆p| ≪ |p0|, where ∆p is the variation in momentum. This means that the
size of the pulse is much larger than a de Broglie wavelength, in all directions.
Even though we cannot use true plane waves in the analysis, we can come
as close as we wish to plane waves, by setting up the in states in sufficiently
remote past, sufficiently far away.

In Peskin & Schroeder p. 102-104, the S-matrix is introduced as the
overlap between so-called in and out states. Read p. 102-103 and the first
paragraph on p. 104. Try to understand what is meant by the in and
out states (and (4.70)). Consider the special case with a free Klein-Gordon
theory (which is the one treated in this exercise). What is the S-matrix in
this case? Relate to this exercise.

Hint: When there is no interaction, the set of in states and out states are
identical. Thus the S-matrix is the identity. When there is interaction,
the in states are like free almost-plane-waves in the remote past, while
the out states are like free almost-plane-waves in the remote future.
However, they are Heisenberg states, with a common reference time for
the Heisenberg picture.


