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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 4

Problem 1 Group theory, part 1: Group condi-
tions (T. Klungland)

In this exercise you are asked to show that SU (N), the group of unitary
N × N with determinant equal to 1, satisfy the definition of a group.
Condition 2 holds automatically like it did for the general linear group;
you need to show the rest.

NB: This problem and the next are based on the group theory note
posted on the course website; it is recommended you read it before solving.

a) Show that SU (N) satisfies condition 1, that is: For any U1, U2 ∈ SU (N),

U3 ≡ U1U2 ∈ SU (N), meaning that U †
3U3 = I and detU3 = 1.

b) Show that SU (N) satisfies condition 3, i.e. that IN×N ∈ SU (N).

c) Show that SU (N) satisfies condition 4. For each U ∈ SU (N), an
inverse exists by definition since U †U = I, but it must be verified that
U−1 = U † ∈ SU (N).

Problem 2 Group theory, part 2: SU(2) algebra
(T. Klungland)

This exercise explores the algebra of SU (2), and the generators of its
fundamental and adjoint representations.

a) Consider an element of the fundamental representation of SU (2)
expanded infinitesimally away from the identity:

U = I2×2 + iajuj , (1)

where aj ∈ R, j = 1, 2, 3, are infinitesimal parameters, and uj are the
generators of the fundamental representation. These provide a basis for the
space of all such elements (argue why three basis elements are sufficient!).
By requiring that U ∈ SU (2), keeping only the first order in aj , show that
the generators must satisfy the conditions

u†i = ui, (2)

Tr (ui) = 0. (3)

b) One possible basis of the algebra is given by the Pauli matrices, ui =
1
2σi,

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4)
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Argue that these actually are a basis for the algebra, and show explicitly
that it satisfies

[ui, uj ] = iϵijkuk, (5)

where ϵijk is the Levi-Civita symbol.

c) For the interested student: Construct the generators of the adjoint
representation according to the definition at the end of the group theory
note, and show that these satisfy (5).

Problem 3 Poincare algebra (J. Skaar)

The Lorentz transformations form a group, the Lorentz group, consisting of
rotations and boosts: xµ 7→ x′µ = Λµ

νxν . More generally, one often considers
the Poincare group, which also includes translations xµ 7→ x′µ = xµ + aµ.

When we do a Lorentz transformation Λ, the quantum states undergo a
unitary transformation U(Λ) (P&S p. 23; will also be discussed on p. 59).
Similarly, because spacetime is invariant under translations, translation by
a four vector a leads to a unitary transformation on the quantum states.

We will use a notation U(Λ, a) which denotes the quantum unitary
transformation which results from a Lorentz transformation Λ followed by
translation a:

xµ 7→ x′µ = Λµ
νx

ν + aµ. (6)

If you would like a detailed treatment, see Weinberg Ch. 2.

a) Argue that

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2). (7)

b) For an infinitesimal translation aµ = ϵµ, the unitary operator must be
of the form

U(1, ϵ) = 1− iϵµP
µ +O(ϵ2), (8)

where the terms O(ϵ2) can be dropped. Here Pµ is an operator independent
of ϵ, and a factor −i has been taken out for later convenience. We will later
identify Pµ as the four-momentum operator.

Prove that Pµ is hermittian.

c) Prove that
U−1(Λ, a)PµU(Λ, a) = Λµ

νP
ν . (9)

Eq. (9) means that the operator Pµ transforms under Lorentz
transformations as a four-vector.

d) Prove that
[Pµ, P ν ] = 0 (10)

for all µ and ν.
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e) Similarly to the method we have used to prove (10), we can obtain the
remaining Poincare algebra. Let Λ = 1 + ω, where ω is infinitesimal, and
a = ϵ. Then

U(1 + ω, ϵ) = 1− iϵµP
µ +

i

2
ωµνJ

µν , (11)

for some infinitesimal coefficients i
2ωµν and operators Jµν . Going through

the same steps as above, one obtains (you don’t have to verify these
equations):

i[Jµν , Jρσ] = gνρJµσ − gµρJνσ − gσµJρν + gσνJρµ, (12a)

i[Pµ, Jρσ] = gµρP σ − gµσP ρ, (12b)

[Pµ, P ν ] = 0. (12c)

The set (12) is the so-called Lie algebra of the Poincare group.
Prove that ωµν = −ωνµ, and therefore, that we can take Jνµ = −Jµν .

f) The Lie algebra describes the behavior of the group elements close to
identity, (11). We will now consider more general group elements. Consider,
for example, U(1, a) for any a:

U(1, a) = [U(1, a/n)]n =
[
1− iaµP

µ/n+O(n−2)
]n
. (13)

By letting n → ∞, argue that

U(1, a) = e−iaµPµ
. (14)

What is the physical interpretation of P 0?

g) Prove that
eiPxϕ(0)e−iPx = ϕ(x). (15)

h) Remarkably, the conclusions and interpretations so far have been found
from the Poincare symmetry of the theory only; thus the results are valid
even though we don’t know the details of the theory. In particular they are
valid for interacting theories.

Why can we choose the eigenstates of the Hamiltonian H ≡ P 0 to be
simultaneous eigenstates of P i?

i) For the free-field ladder operators, use (15) to verify

eiPxape
−iPx = ape

−ipx, (16a)

eiHtape
−iHt = ape

−iEpt, (16b)

e−iP·xape
iP·x = ape

ip·x, (16c)

which correspond to (2.46) and (2.48) in P&S.


