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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 4

Problem 1 Group theory, part 1: Group condi-
tions (T. Klungland)

In this exercise you are asked to show that SU (N), the group of unitary
N × N with determinant equal to 1, satisfy the definition of a group.
Condition 2 holds automatically like it did for the general linear group;
you need to show the rest.

NB: This problem and the next are based on the group theory note
posted on the course website; it is recommended you read it before solving.

a) Show that SU (N) satisfies condition 1, that is: For any U1, U2 ∈ SU (N),

U3 ≡ U1U2 ∈ SU (N), meaning that U †
3U3 = I and detU3 = 1.

Solution: The hermitian conjugate of a product is (AB)† = B†A†, so

U †
3U3 = U †

2U
†
1U1U2 = I, (1)

proving the “unitary” part of SU (N). Second, since det (AB) =
detAdetB,

detU3 = detU1 detU2, (2)

completing the proof.

b) Show that SU (N) satisfies condition 3, i.e. that IN×N ∈ SU (N).

Solution: Firstly, det I = 1. Secondly, I† = I, meaning that

I†I = I2 = I, (3)

so that I ∈ SU (N).

c) Show that SU (N) satisfies condition 4. For each U ∈ SU (N), an
inverse exists by definition since U †U = I, but it must be verified that
U−1 = U † ∈ SU (N).

Solution: As stated in the exercise, the inverse of U automatically
exists and is given by U−1 = U †. With this, we have(

U−1
)†
U−1 =

(
U †

)†
U † = UU † = I, (4)

and
det

(
U−1

)
= (detU)−1 = 1. (5)
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Problem 2 Group theory, part 2: SU(2) algebra
(T. Klungland)

This exercise explores the algebra of SU (2), and the generators of its
fundamental and adjoint representations.

a) Consider an element of the fundamental representation of SU (2)
expanded infinitesimally away from the identity:

U = I2×2 + iajuj , (6)

where aj ∈ R, j = 1, 2, 3, are infinitesimal parameters, and uj are the
generators of the fundamental representation. These provide a basis for the
space of all such elements (argue why three basis elements are sufficient!).
By requiring that U ∈ SU (2), keeping only the first order in aj , show that
the generators must satisfy the conditions

u†i = ui, (7)

Tr (ui) = 0. (8)

Hint: Note that the parameters aj are arbitrary, meaning that U =
I2×2 + iajuj must satisfy detU = 1 and U †U = I2×2 for any set of
parameters.

Solution: We begin by arguing why three numbers are required to
parametrize all matrices in SU (2). A general 2 × 2 matrix has eight
degrees of freedom, since all four elements can be complex. We then
require unitarity, which means enforcing U †U = I2×2. This gives four
equations to restrict the parameters, lowering the number of degrees of
freedom by four. Requiring the determinant to be 1 gives an additional
constraint, bringing the number of degrees of freedom, and hence the
number of parameters required to describe any SU (2) matrix, down to
three.

Moving to the main part of the exercise, we first require unitarity:

1 = U †U =
(
I − iaju

†
j

)
(I + iakuk) (9)

= I + iaj

(
uj − u†j

)
+O

(
a2
)
, (10)

meaning that we must have uj = u†j for j = 1, 2, 3 for this to hold for
any combination of parameters aj .

To write the determinant of U , we parametrize U as

U =

(
1 + iajAj iajBj

iajCj 1 + iajDj

)
, (11)

where we parametrized the generators by ui =

(
Ai Bi

Ci Di

)
. The

determinant of U is then

detU = 1 + iaj (Aj +Dj)︸ ︷︷ ︸
=Tr(uj)

+O
(
a2
)
. (12)



FYS4170/9170 Problem set 4 Page 3

Requiring this to be 1 independent of the parameters ai then leads to
the condition Tr (ui) = 0.

b) One possible basis of the algebra is given by the Pauli matrices, ui =
1
2σi,

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (13)

Argue that these actually are a basis for the algebra, and show explicitly
that it satisfies

[ui, uj ] = iϵijkuk, (14)

where ϵijk is the Levi-Civita symbol.

Solution: First off, the Pauli matrices are an appropriate basis since
they satisfy the conditions derived in part a, and because they are
linearly independent.

Straightforward matrix multiplication reveals that

[u1, u2] = − [u2, u1] = iu3, (15)

[u2, u3] = − [u3, u2] = iu1, (16)

[u3, u1] = − [u1, u3] = iu2, (17)

which can be summarized as [ui, uj ] = iϵijkuk.

c) For the interested student: Construct the generators of the adjoint
representation according to the definition at the end of the group theory
note, and show that these satisfy (14).

Solution: The definition of the adjoint representation gives
(
uAi

)
jk

=
−iϵijk; explicitly, this gives

uA1 =

0 0 0
0 0 −i
0 i 0

 , (18)

uA2 =

 0 0 i
0 0 0
−i 0 0

 , (19)

uA3 =

0 −i 0
i 0 0
0 0 0

 . (20)

Showing that these satisfy
[
uAi , u

A
j

]
= iϵijku

A
k is again a matter of

straightforward matrix multiplication.

Problem 3 Poincare algebra (J. Skaar)

The Lorentz transformations form a group, the Lorentz group, consisting of
rotations and boosts: xµ 7→ x′µ = Λµ

νxν . More generally, one often considers
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the Poincare group, which also includes translations xµ 7→ x′µ = xµ + aµ.
When we do a Lorentz transformation Λ, the quantum states undergo a

unitary transformation U(Λ) (P&S p. 23; will also be discussed on p. 59).
Similarly, because spacetime is invariant under translations, translation by
a four vector a leads to a unitary transformation on the quantum states.

We will use a notation U(Λ, a) which denotes the quantum unitary
transformation which results from a Lorentz transformation Λ followed by
translation a:

xµ 7→ x′µ = Λµ
νx

ν + aµ. (21)

If you would like a detailed treatment, see Weinberg Ch. 2.

a) Argue that

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2). (22)

Hint: The U matrices must form a representation of the Poincare group.
In other words, the transformation U(Λ2, a2)U(Λ1, a1) corrsponds to
first doing a Lorentz transformation Λ1, then translation a1, then
Lorentz transformation Λ2, and finally translation a2. Find the resulting
Poincare transformation xµ 7→ x′µ, and then the resulting U .

b) For an infinitesimal translation aµ = ϵµ, the unitary operator must be
of the form

U(1, ϵ) = 1− iϵµP
µ +O(ϵ2), (23)

where the terms O(ϵ2) can be dropped. Here Pµ is an operator independent
of ϵ, and a factor −i has been taken out for later convenience. We will later
identify Pµ as the four-momentum operator.

Prove that Pµ is hermittian.

Hint: Use that U(1, ϵ) is unitary, and ignore terms second order in ϵ.

c) Prove that
U−1(Λ, a)PµU(Λ, a) = Λµ

νP
ν . (24)

Eq. (24) means that the operator Pµ transforms under Lorentz
transformations as a four-vector.

Hint: Since the matrices U form a representation of the Poincare group,
we must have

U−1(Λ, a)U(1, ϵ)U(Λ, a) = U(1,Λ−1ϵ) (25)

First prove this relation; then use it.
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Solution: The composed operator on the left-hand side of (25)
corresponds to the total Lorentz transformation

x 7→ x′ = Λ−1
(
[(Λx+ a) + ϵ]− a

)
= x+ Λ−1ϵ.

(Remember that corresponding to U−1(Λ, a) we must first subtract a
before applying Λ−1.) Thus we obtain (25). Now substitute (23) in (25)
and note that ϵ is arbitrary.

d) Prove that
[Pµ, P ν ] = 0 (26)

for all µ and ν.

Hint: Use (24), set Λ = 1 and a = ϵ (where ϵ is infinitesimal).

e) Similarly to the method we have used to prove (26), we can obtain the
remaining Poincare algebra. Let Λ = 1 + ω, where ω is infinitesimal, and
a = ϵ. Then

U(1 + ω, ϵ) = 1− iϵµP
µ +

i

2
ωµνJ

µν , (27)

for some infinitesimal coefficients i
2ωµν and operators Jµν . Going through

the same steps as above, one obtains (you don’t have to verify these
equations):

i[Jµν , Jρσ] = gνρJµσ − gµρJνσ − gσµJρν + gσνJρµ, (28a)

i[Pµ, Jρσ] = gµρP σ − gµσP ρ, (28b)

[Pµ, P ν ] = 0. (28c)

The set (28) is the so-called Lie algebra of the Poincare group.
Prove that ωµν = −ωνµ, and therefore, that we can take Jνµ = −Jµν .

Hint: Use the condition for the Lorentz transformation matrix

gµνΛ
µ
ρΛ

ν
σ = gρσ, (29)

as you learned in FYS3120. Also convince yourself that the
antisymmetry ωµν = −ωνµ means that any symmetric part of Jµν does
not contribute to the product ωµνJ

µν .

Solution: For the first part use the hint:

gρσ = gµν
(
δµρ + ωµ

ρ

)
(δνσ + ων

σ) = gρσ + ωσρ + ωρσ +O(ω2). (30)

Since ω is infinitesimal, we ignore the second order term and obtain the
antisymmetry: ωσρ + ωρσ = 0.
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For the second part, we decompose Jµν into its symmetric and
antisymmetric parts:

Jµν =
1

2
(Jµν + Jνµ) +

1

2
(Jµν − Jνµ) . (31)

Then we note that the symmetric parts gives zero after multiplication
by ωµν :

ωµν(J
µν + Jνµ) = ωµνJ

µν + ωµνJ
νµ = ωµνJ

µν − ωνµJ
νµ

= ωµνJ
µν − ωµνJ

µν = 0, (32)

where we have used the antisymmetry of ω in the second equality, and
renamed the indices (µ 7→ ν and ν 7→ µ) in the third. (Any index that
is summed over can be named whatever you like.) Thus the symmetric
part of Jµν can be taken to be zero in (27).

f) The Lie algebra describes the behavior of the group elements close to
identity, (27). We will now consider more general group elements. Consider,
for example, U(1, a) for any a:

U(1, a) = [U(1, a/n)]n =
[
1− iaµP

µ/n+O(n−2)
]n
. (33)

By letting n→ ∞, argue that

U(1, a) = e−iaµPµ
. (34)

What is the physical interpretation of P 0?

Solution: We have

U(1, a) = [U(1, a/n)]n =

[
1− 1

n

(
iaµP

µ +O(n−1)
)]n

, (35)

which tends to (34) by the usual property of the exponential function.
Letting aµ = (t, 0, 0, 0) we have U(1, a) = e−iP 0t, which acts on the
quantum state. Thus P 0 = H is the Hamiltonian. It is then natural to
identify Pµ as the four-momentum vector.

g) Prove that
eiPxϕ(0)e−iPx = ϕ(x). (36)

Hint: Use the unitary translation operator (34).

Solution: Considering, for example, the expectation value ⟨ψ|ϕ(x) |ψ⟩
in an arbitrary state |ψ⟩, at the point x = 0. Due to translation
invariance of spacetime, we may move the entire experiment from 0 to a,
without changing the expectation value. Thus we want ϕ(x) 7→ ϕ(x−a),
which in particular means that ϕ(a) 7→ ϕ(0). (Perhaps you don’t
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immediately agree here; transformations are indeed confusing. Try to
convince yourself by plotting a function f(x) with a peak at x = 0; then
f(x− a) will have the peak for x = a.)

We translate xµ 7→ x′µ = xµ + aµ, which means that the quantum
state transforms as

|ψ⟩ 7→ U(1, aµ) |ψ⟩ = e−iPµaµ |ψ⟩ = e−iPa |ψ⟩ . (37)

Thus the expectation value transforms as

⟨ψ|ϕ(a) |ψ⟩ 7→ ⟨ψ| eiPaϕ(0)e−iPa |ψ⟩ (38)

Since the expectation value must be unchanged, we have

⟨ψ|ϕ(a) |ψ⟩ = ⟨ψ| eiPaϕ(0)e−iPa |ψ⟩ . (39)

Since this must be valid for any |ψ⟩ (and since ϕ(x) is hermitian and
therefore diagonalizable), we must have ϕ(a) = eiPaϕ(0)e−iPa. The
translation vector a is arbitrary, so we may instead write

ϕ(x) = eiPxϕ(0)e−iPx. (40)

h) Remarkably, the conclusions and interpretations so far have been found
from the Poincare symmetry of the theory only; thus the results are valid
even though we don’t know the details of the theory. In particular they are
valid for interacting theories.

Why can we choose the eigenstates of the Hamiltonian H ≡ P 0 to be
simultaneous eigenstates of P i?

Hint: Eq. (26).

i) For the free-field ladder operators, use (36) to verify

eiPxape
−iPx = ape

−ipx, (41a)

eiHtape
−iHt = ape

−iEpt, (41b)

e−iP·xape
iP·x = ape

ip·x, (41c)

which correspond to (2.46) and (2.48) in P&S.

Solution: Express the ladder operator from the field (see problem set
2), and use (36). The last two relations are special cases.


