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FYS4170/9170 –– Relativistic Quantum Field Theory

Problem set 5

Problem 1 Classical field theory for the Dirac field
(J. Skaar)

The Lagrangian for the Dirac field is

L = ψ̄(iγµ∂µ −m)ψ. (1)

Here ψ = ψ(x) is a wave function object consisting of 4 elements, ψ̄ = ψ†γ0,
and γµ for µ = 0, 1, 2, 3 are constant 4× 4 matrices. Note that while µ is a
spacetime index, the four elements ψα of ψ do not correspond to the four
dimensions of spacetime.

a) Argue that (1) can be written in the form

L = ψ̄αiγ
µ
αβ∂µψβ −mψ̄αψα, (2)

where we have used the Einstein summation convention, and the indices α
and β run over the four elements of the vectors.

b) Find the Euler-Lagrange equation for ψ and ψ̄ by treating ψ and ψ̄ (or
ψ†) as independent.

Solution: The Euler-Lagrange equation for a field ϕ is

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L
∂ϕ

= 0.

We get one equation for each field ψβ:

∂µψ̄αiγ
µ
αβ +mψ̄β = 0, (3)

and one for each field ψ̄α:

iγµαβ∂µψβ −mψα = 0. (4)

The latter equation can be written

iγµ∂µψ −mψ = 0, (5)

which is the Dirac equation, while the former can be shown by properties
of the γ matrices ((γ0)2 = 1, γ0γµγ0 = (γµ)†) to be Dirac equation in
Hermitian-conjugate form.

c) The Lagrangian is unchanged under a global phase transformation

ψ(x) → e−iαψ(x), (6)

where the constant α is real. What is the associated, conserved Noether
current density?
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Solution: Referring to p. 17-18 in P&S, we have

α∆ψβ = −iαψβ
α∆ψ̄β = iαψ̄β

J µ = 0.

The conserved current is (see (2.12) and the comment below it, in P&S)

jµ =
∂L

∂(∂µψβ)
(−iψβ) +

∂L
∂(∂µψ̄β)

iψ̄β = −ψ̄αiγµαβiψβ = ψ̄γµψ. (7)

Problem 2 Dirac matrices (L. L. Braseth, T. Klungland)

This problem is intended to give you some practice working with Dirac
matrices, as well as to show the origin of some identities that will be very
useful in future calculations.

All of the identities can be found from the Dirac algebra,

{γµ, γν} = 2gµν14×4. (8)

Note that the identity matrix on the right-hand side is usually left implicit,
but in certain situations (for example in part b) it is important to remember
that it is there.

a) Show the following contraction identities:

γµγµ = 4, (9)

γµγνγµ = −2γν , (10)

γµγνγαγµ = 4gνα, (11)

γµγνγαγργµ = −2γργαγν . (12)

Hint: Begin by showing (9); then, for each successive identity, use the
previous one to shorten the calculations.

Solution: Eq. (9) follows from (8) since

γµγµ = gµνγ
µγν =

1

2
gµν {γµ, γν} = gµνg

µν = 4. (13)

As an aside, the second equality is a consequence of symmetry: Since
gµν is symmetric in its indices, only the symmetric part of γµγν can
contribute in the contraction: Using some convenient notation that is
frequently used in such calculations, we have that for any symmetric
Aµν and arbitrary Bµν ,

AµνB
µν = AµνB

(µν), (14)
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where B(µν) is the symmetric component of Bµν , defined as B(µν) ≡
1
2 (B

µν +Bνµ). Its antisymmetric component is similarly defined as

B[µν] ≡ 1
2 (B

µν −Bνµ).
With the first identity at hand, we obtain (10) from the Dirac algebra

by writing γµγν = 2gµν−γνγµ; the first term then becomes trivial, while
the second can be solved using (9). The remaining identities follow in
the same way — (11) follows from (10), and (12) follows from (11) —
with some additional use of (8) to re-arrange matrices.

b) Calculations involving fermions typically involve evaluating traces of
Dirac matrices, and products of such. These calculations can be sped up
substantially by recalling some properties of these traces; to that end, derive
the following relations by using the Dirac algebra and the cyclic property
of traces, Tr (ABC) = Tr (CAB). For the last identity, the γ5 matrix

γ5 ≡ iγ0γ1γ2γ3, which satisfies
(
γ5

)2
= 14×4,

{
γ5, γµ

}
= 0, may be useful.

Tr [γµγν ] = 4gµν , (15)

Tr [γµγνγργσ] = 4gµνgρσ − 4gµρgνσ + 4gµσgνρ, (16)

Tr [γµ1 · · · γµn ] = 0, for n = 2m− 1 (odd). (17)

Hint: The second identity follows from the first; to show the last
identity, insert a factor of

(
γ5

)2
and then use the cyclic property of

the trace, and the anticommutation of γ5 with the other matrices.

Solution: The first identity is shown from the Dirac algebra and the
cyclic property of traces:

Tr [γµγν ] =
1

2
Tr [{γµ, γν}] = gµνTr [14×4] = 4gµν . (18)

For the next one, commute γµ past each of the others until it is furthest
to the right, each time using (8); this leaves three terms where you can
use the equation we just derived, and one which, once you cycle γµ back
to the front, is identical to the original trace.

To show that the trace of any odd-numbered product of γ matrices
vanishes, insert a factor 1 = γ5γ5 to the right of the n = 2m − 1
other matrices, and cycle one γ5 to the front, which doesn’t change
the result. Then move the leftmost γ5 past all of the other matrices;
since it anticommutes with all of them, this gives an additional factor
(−1)2m−1 = −1. You are then left with the same trace that you started
with (removing again the factor γ5γ5), only with a minus sign; thus it
must be zero.

c) Show the following identities involving contractions between Dirac
matrices and four-momenta, pµγ

µ ≡ �p:

(�p)
2 = p2, (19)

Tr [�p1�p2�p3�p4] = 4 (p1 · p2) (p3 · p4)− 4 (p1 · p3) (p2 · p4) + 4 (p1 · p4) (p2 · p3) .
(20)
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Hint: Use the symmetry considerations discussed in the solution to part
a, and results from the previous parts.

Solution: First, using the same symmetry arguments as before, we have

(�p)
2 = pµγ

µpνγ
ν =

1

2
pµpν {γµ, γν} = pµpνg

µν = p2, (21)

since pµpν = pνpµ (recall that these are components of the four-
momentum, i.e. simply numbers). The trace identity follows from (16)
by writing �p1�p2�p3�p4 = p1µp2νp3ρp4σγ

µγνγργσ and using the linearity of
traces to factor out the momenta.

Problem 3 Classical source of particles (J. Skaar)

In this problem we will consider the creation of Klein-Gordon particles with
a classical current source j(x), see P&S p. 32. The creation of photons with
a classical, electric current source will be similar.

We assume that the current source has acted for some time, but that
it has been turned off before the observation time x0. You should start by
going through (and writing out) the derivation of (2.64) in P&S p. 32.

Recall that j̃(p) is the Fourier transform of j(x), and that the Heisenberg-
picture field transforms from its usual free form

ϕfree(x) =

∫
d3p

(2π)3
1√
2Ep

{
ape

−ipx + h.c.

}
(22)

to

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

{
[ap + αψ(p)]e−ipx + h.c.

}
(23)

by the action of the source. Here

αψ(p) =
i√
2Ep

j̃(p), (24)

where p2 = m2. The parameter α is included such that ψ(p) can be assumed

normalized:
∫ d3p

(2π)3
|ψ(p)|2 = 1.

You may find the following operator identiy useful:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + · · · (25)

In addition you may need the Baker–Campbell–Hausdorff formula:

eAeB = eC , where C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]− 1

12
[B, [A,B] + . . .

(26)
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a) Define the wavepacket ladder operator

a†ψ =

∫
d3p

(2π)3
ψ(p)a†p, (27)

and a so-called displacement operator

D(α) = eαa
†
ψ−α

∗aψ (28)

Note that D(α) is unitary, and show that

D†(α)apD(α) = ap + αψ(p). (29)

Hint: Calculate the commutator [α∗aψ − αa†ψ, ap] and use (25).

b) Eq. (29) implies that

ϕ(x) = D†(α)ϕfree(x)D(α). (30)

Thus the unitary source operator (or time-evolution operator) in the
Heisenberg picture is D(α).

Going to the Schrödinger picture, describe the action of the source if we
start in a vacuum state. Prove that the resulting state is a coherent state,

|α⟩ψ = e−|α|2/2
∑
n

(αa†ψ)
n

n!
|0⟩ = e−|α|2/2

∑
n

αn√
n!

|n⟩ψ . (31)

Here |n⟩ψ denotes a n-photon state in the wavepacket ψ. This result is
perhaps not very surprising; a classical source produces a classical (coherent)
state. For photons this is an expected result: The electromagnetic state
produced by a current (an antenna) is a coherent state, which describes a
classical electromagnetic field.

Solution: The source produces the state

|α⟩ψ ≡ D(α) |0⟩ . (32)

In order to evaluate this state, it is useful to rewrite D(α) such that
the annihilation operators act first. This can be done with the help of
the Baker–Campbell–Hausdorff formula, which becomes simple since the
commutators of commutators vanish. Setting A = αa†ψ and B = −α∗aψ,
this leads to

D(α) = e−|α|2/2eαa
†
ψe−α

∗aψ (33)

With (33), the desired form (31) follows immediately since aψ |0⟩ = 0.


