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FYS4170: Preliminaries
There are many key mathematical and physical concepts that quantum field theory
rests on. These notes summarize some of the things that you absolutely need to know
before being able to successfully follow this course. It also fixes our notation and
conventions (we will use the same as in the book by Peskin & Schroeder). If you feel
even slightly uncomfortable with any of the below concepts or terms, you should as
soon as possible review a suitable book or your notes of previous courses.

We will throughout use ‘natural units’ where ~ = c = 1 (though these constants
are kept at some places for pedagogic reasons). All dimensionfull quantities can then
be expressed in terms of energy, the typical choice of unit being GeV. For example,

1 GeV = 1.783× 10−24 g [×c2]

1 GeV−1 = 1.973× 10−14 cm [×1/~c] = 6.581× 10−25 s [×1/~]

1 GeV−2 = 3.894× 10−28 cm [×1/~2c2] ≡ 3.894× 10−4 barn [×1/~2c2]

1 Special relativity

The time t and the position vector x (on the blackboard we will use ~x) can be com-
bined into a four-vector in Minkowski space xµ = (t,x) = (x0, x1, x2, x3). We use
small greek letters to denote space-time indices and small roman letters to deno-
te spatial indices of such four-vectors, i.e. µ, ν, ... = 0, 1, 2, 3 and i, j, ... = 1, 2, 3.1

Throughout the course, the summation convention is used, in which repeated in-
dices are always summed over. This implies that any index that appears twice in
an expression is a dummy index (i.e. its name has no importance: xµxµ = xρxρ =
x0x0 + x1x1 + x2x2 + x3x3) and that no index can appear more than twice. For
spacetime-indices, it is furthermore very important to keep track of whether they are
up or down; in particular, you should never encounter expressions like aµbµ (see also
below the comments about scalar products).

In Minkowski space, the metric tensor g (aka gµν , see the footnote) is given by

gµν = ηµν ≡


1
−1

−1
−1

 =
(
g−1
)
µν
≡ gµν . (1)

We use the metric gµν to lower indices, and the inverse metric gµν to raise indices.
For example, xµ ≡ gµνx

ν = (t,−x) and xµ = gµνxν . Note that while the displacement
vector xµ = (t,x) is ‘naturally raised’, the derivative vector is naturally lowered:

∂µ ≡
∂

∂xµ
=

(
∂

∂x0
,∇
)
, so ∂µ =

(
∂

∂x0
,−∇

)
. (2)

1For four-vectors we sometimes follow the standard, if somewhat confusing, convention of writing
Aµ or Aµ instead of ‘A’; we thus use the same notation for a vector and its components, and it is only
the context that determines the correct interpretation. (This convention allows a simple distinction
between covariant (‘lower indices’) and contravariant (‘upper indices’) vectors). A Euclidian three-

vector, in contrast, is always denoted as A (or ~A), while its components are denoted with Ai.



A four-vector in general is any object that transforms under a Lorentz transfor-
mation Λ, described by a 4× 4 matrix Λµ

ν , according to

Aµ → A′µ = Λµ
νA

ν (and thus Aµ → A′µ = Λ ν
µ Aν) . (3)

A Lorentz transformation is by definition any transformation that leaves the
’length’ of a vector in Minkowski space invariant:2

ηµνx
µxν

!
= ηµνx

′µx′
ν

= ηµνΛ
µ
ρΛ

ν
σx

ρxσ . (4)

(More generally, a Lorentz tensor is an object with several indices, T µ1µ2...ν1ν2... , that all
transform as above.) This implies that any scalar product involving four-vectors is
invariant (i.e. a ‘scalar’) under Lorentz transformations:

A ·B ≡ AµBµ = AµB
µ = A0B0 −A ·B = const. (5)

Note that a scalar product always involves a contravariant and a covariant vector.
Lorentz transformations contain standard 3D rotations as well as Lorentz boosts.

Example: For a boost along the x-axis, Λ takes the form

Λµ
ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 , (6)

with β ≡ v/c denoting the relative velocity of the two frames and γ ≡ (1 − β2)−1/2.
Using Eq. (3), this implies the familiar transformation x→ x′ with

t → t′ = γ(t− βx) (7)

x → x′ = γ(x− βt) (8)

y → y′ = y (9)

z → z′ = z (10)

The most important four-vector that we will encounter, besides the position vector,
is the four-momentum. It satisfies p2 ≡ p · p = m2, where m is the invariant mass
of the particle. Writing the four-momentum in terms of the energy E and the 3-
momentum p,

pµ = (E,p) , (11)

we thus directly get the famous relativistic dispersion relation for a massive particle:

E2 − p2 = m2 . (12)

2Recall that equations like this actually describe matrix multiplications. Without index notation,
it would read

xT · η · x !
= x′

T · η · x′ = (Λ · x)T · η · Λ · x .



Maxwell’s equations, using Heaviside-Lorentz conventions3, read

∇ · E = ρ , (13)

∇× E = −∂tB , (14)

∇ ·B = 0 , (15)

∇×B = J + ∂tE , (16)

where ρ is the charge and J the current density. By realizing that the electromagnetic
potentials Φ and A (from which the electric and magnetic fields can be constructed
as E = −∇φ− ∂tA and B = ∇×A) can be combined into a four vector

Aµ ≡ (φ,A) , (17)

the two Maxwell equations with sources ((13) and (16)) can be brought into the
following elegant form:

∂µF
µν = ejµ . (18)

Here, we have introduced the field tensor

Fµν ≡ ∂µAν − ∂νAµ (19)

and the current density four-vector jµ ≡ (ρ, j)/e. The remaining two Maxwell equati-
ons are automatically satisfied from (19). The advantage of the tensor notation is not
only its compactness but also that it now becomes manifest that Maxwells equations
are Lorentz invariant (i.e. they take the same form in any inertial system).

In vacuum (jµ = 0), and adopting the Lorenz gauge (∂µA
µ = 0), Maxwells equa-

tions reduce to a set of four wave equations (can you show this?),

�Aµ ≡ ∂ν∂
νAµ = 0 , (20)

for the components of the (four-)vector potential. The solution to this equation is

Aµ = εµ eik·x , (21)

where k = (ω,k), with |k| = ω, is the wave-vector (and hence its four-momentum).
The constant εµ is known as the polarization (or polarization vector) of the wave. It
is subject to the constraint

kµε
µ = 0, (22)

as follows from the Lorenz gauge condition.

2 Classical dynamics: Lagrange & Hamilton

The state of a classical physical system at a given time t can be fully characterized by
a set of generalized coordinates qa, with a = 1, ..., N (for an unconstrained system, N

3In these conventions, which we will use throughout, the Coulomb potential of a point charge is
Q/4πr and the fine-structure constant α = e2/4π ≈ 1/137.



equals three times the number of particles), and their associated velocities q̇a ≡ dqa/dt.
The principle of least action requires that the true path q(t) taken by the system (the
physical trajectory) is the one that extremizes the action, i.e. the functional

S[q] ≡
∫ t2

t1

L(qa, q̇a) dt . (23)

The whole dynamics is thus governed by the Lagrangian L = L(qa, q̇a).
4 Demanding

δS = 0, in particular, leads to the Euler-Lagrange equations of motion:

dL

dqa
− d

dt

∂L

∂q̇a
= 0 . (24)

Example. For a single particle in a potential V (x), we have L = 1
2
mẋ2−V in Cartesian

coordinates. Eq. (24) then reproduces the familiar mẍ = −∇V .
For each generalized coordinate qa, the canonically conjugated momentum

pa is defined as

pa ≡
∂L(q, q̇)

∂qa
. (25)

A Legendre transformation of the Lagrangian then leads to the Hamiltonian H, which
no longer depends on the velocities:5

H(p, q) ≡ paq̇a(p, q)− L[q, q̇(p, q)] . (26)

In this formulation, the system is described by the Hamilton equations of motion,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (27)

i.e. 2N coupled first-order ODEs instead of the N second-order ODEs in Eq. (24).

Example. Considering again a single particle in a potential, we have H = p · ẋ−L =
1

2m
p2 + V . The Hamilton equations then give as expected q̇ = p/m and ṗ = −∇V .

An important quantity in classical mechanics is furthermore the Poisson bracket,
which is defined as

{f, g} ≡ ∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
(28)

for any two functions f(q, p) and g(q, p) on phase space. The time evolution of any
physical quantity f = f(t, q, p) then takes the simple form

df

dt
=
∂f

∂t
+
∂H

∂pa
∂f

∂qa
− ∂H

∂qa

∂f

∂pa
= ∂tf − {H, f} , (29)

where the explicit time-dependence of f – and hence the ∂t term – never appears in
applications relevant to our context. Another important aspect, which significantly
helps to construct the quantum theory, are the properties of the phase-space variables

{qa, pb} = δab and {qa, qb} = {pa, pb} = 0 . (30)
4For open systems, i.e. if an external force is present, L can also have an explicit time-dependence.
5Note that this is only possible if Eq. (25) can be solved for q̇a. Normally, this requires

det ∂L/∂q̇a∂qb 6= 0.



3 Quantum mechanics

In classical mechanics, the state of a physical system is fully specified by its phase-
space variables q and p. In quantum mechanics, on the other hand, the state of a
system is described in a conceptually very different way, namely by a vector |ψ〉 in
Hilbert space. The canonical quantization of a classical system consists in promo-
ting phase-space functions f(q, p) to operators f̂ that act on those quantum states.
These operators are constructed such that they obey commutation relations instead
of the classical Poisson brackets:

{ , }classical → −
i

~
[ , ]quantum . (31)

Note that this prescription is not unique due to ordering ambiguities, i.e. there are in
general several operators f̂ that correspond to a given classical function f . In order
to facilitate notation, we will typically leave out the hat when it is clear from the
context that a given quantity is an operator.

Example. From the above prescription, we obtain immediately the familiar relations
for the position and momentum operators,

[q̂a, p̂b] = i~ δab and [q̂a, q̂b] = [p̂a, p̂b] = 0 . (32)

In position space, e.g., the momentum operator is explicitly given by p̂ = −i~∇.
With Ê = i~∂t, this can be combined into (note sign and index position!)

p̂µ = i∂µ . (33)

The plane wave e−ik·x, i.e. the wavefunction describing a single free particle, thus has
momentum +kµ since p̂µ

(
e−ik·x

)
= kµe−ik·x.

The advantage of the abstract Dirac (or bra-ket) notation is that it is in-
dependent of the representation, i.e. independent of the choice of basis. Once we
choose a complete orthonormal Hilbert-space basis |n〉, satisfying 〈n|m〉 = δnm and∑
|n〉〈n| = 1, we can always expand the state as

|ψ〉 =
∑
|n〉 〈n|ψ〉︸ ︷︷ ︸

≡cn

=
∑

cn|n〉 and thus 〈ψ| =
∑

c∗n〈n| . (34)

For a continuous rather than discrete basis, this works very similar. A typical example
is the position space representation, where |x〉 denote eigenvectors of the position
operator: q̂|x〉 = x|x〉. The orthonomality and completeness relations then become

〈x|y〉 = δ(3)(x− y) and

∫
d3x |x〉〈x| = 1 . (35)

This can be used to calculate the scalar product of any two vectors |ψ1〉 and |ψ2〉 as

〈ψ1|ψ2〉 =

∫
d3x 〈ψ1|x〉〈x|ψ2〉 =

∫
d3xψ1(x)∗ψ2(x) = 〈ψ2|ψ1〉∗ , (36)



where ψ(t,x) = 〈x|ψ〉 is the familiar Schrödinger wavefunction in position space (as-
suming that |ψ〉 =

∫
d3xψ(x)|x〉 is given in the Schrödinger picture, see below). In

momentum space, |ψ〉 =
∫
d3p (2π)−3 ψ(p)|p〉 leads to the identical scalar product.

For every observable O, there is further an operator Ô such that the expectation va-
lue of O for a state |ψ〉 is 〈O〉 = 〈ψ|Ô|ψ〉 = 〈ψ|Ôψ〉 = 〈Ô†ψ|ψ〉 (=

∫
d3xψ∗(x)Ôψ(x)

when evaluated in the real space basis).
In the classical case, it is the Hamiltonian H that governs the time evolution of

a physical system, c.f. Eq. (29). The dynamics in quantum mechanics, in analogy, is
governed by the Hamiltonian operator Ĥ and can be described in different ways. In
the Schrödinger picture, which you likely are most familiar with, all operators Ô
are time-independent and the states |ψ〉 evolve according to the Schrödinger equation

i~
d|ψ〉S
dt

= Ĥ|ψ〉S . (37)

An equivalent description is provided by the Heisenberg picture, in which the states
are time-independent while the operators evolve in time according to

dÔH

dt
=
i

~

[
Ĥ, ÔH

]
, (38)

just as expected from Eqns. (29,31). Changing between these two pictures is simple:

|ψ〉H = eiĤt/~|ψ〉S , (39)

ÔH = eiĤt/~ ÔS e
−iĤt/~ . (40)

This implies, e.g., that ĤS = ĤH = Ĥ and that the expectation value of any operator
Ô is the same in both pictures: S〈ψ|ÔS|ψ〉S = H〈ψ|ÔH |ψ〉H . In the course, we will use
both pictures extensively, as well as a hybrid version known as interaction picture.

The quantum treatment of the harmonic oscillator, finally, is of central im-
portance to quantum field theory, too. The eigenstates of the Hamiltonian Ĥ =
p̂2/(2m) + 1

2
mω2q̂2 are most conveniently found by introducing ladder operators

aj ≡
√
mω

2

(
q̂j + i

p̂j
mω

)
and thus a†j ≡

√
mω

2

(
q̂j − i

p̂j
mω

)
, (41)

which because of Eq. (32) satisfy [ai, a
†
j] = 1 and [ai, aj] = [a†i , a

†
j] = 0. This allows

to rewrite Ĥ = ω
∑

i

(
a†iai + 1

2

)
, where the number operator Ni ≡ a†iai has integer

eigenvalues ni, i.e. a†iai|ni〉 = ni|ni〉. The vacuum |0〉 (i.e. the lowest energy state) is
given by ai|0〉 = 0, and all other states are ‘created’ from this because a†i |ni〉 ∝ |ni+1〉.



4 Mathematical tools

4.1 Fourier transforms

We will frequently change between position and momentum space, with the following
convention for the Fourier transforms relating those two:

f(x) =

∫
d4k

(2π)4
e−ik·xf̃(k) , (42)

f̃(k) =

∫
d4x eik·xf(x) . (43)

Factors of 2π will thus always appear in the momentum integrals; for 3D integrals we
need to replace k · x→ −k · x (note the minus sign!). Fourier transforms can help to
find Green’s functions (see the example below).

We will often omit the tilde (i.e., write f(k) as the Fourier transform of f(x)), to
simplify notation.

4.2 Dirac delta function

The Dirac delta ‘function’ δ(x) is not actually a function but a distribution, and is
defined by δ(x) = 0 for all x 6= 0, and

∫
dx δ(x) = 1. An alternative definition is given

in terms of the Heaviside step function Θ(x):

δ(x) ≡ d

dx
Θ(x) , where Θ(x) ≡

{
0 for x < 0
1 for x > 0

. (44)

Useful relations that appear often include∫
dx f(x) δ (x− y) = f(y) , (45)∫
dx f(x) δ′ (x) = −f ′(0) , (46)∫
dx eikx = 2π δ(k) , (47)

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (48)

where the second equation can be understood from integration by parts, and the last
one only holds if the function f(x) only has 1st order zeros (at x = xi). Analogous
definitions and properties of the delta function apply in higher dimensions.

4.3 Green’s functions

Green’s ‘functions’ (which often also rather are distributions), are an important tool
to solve differential equations of the form

Lxf(x) = g(x) . (49)



Here, Lx is a linear, differential operator in x, f the function to be determined and g
an arbitrary function that constitutes the inhomogeneous part of the ODE. A Green’s
function G of Lx is by definition any – often not uniquely determined – solution of

LxG(x, y) = −δ(x− y) . (50)

A Green’s function is thus, in a loose sense, the inverse of Lx. If Lx is translation
invariant (i.e. it does not change for x → x + x0, as is the case in most physics’
applications), the Green’s function can in fact always be written as

G(x, y) = G(x− y) . (51)

If G is known, then a solution of Eq. (49) for (almost) arbitrary g(x) is given by

f(x) = −
∫
dy G(x− y)g(y) , (52)

which directly follows from the definitions of the Green’s and Dirac delta functions.
NB: With f(x) being a solution to Eq. (49), f(x) +

∑
cifi,hom(x) is also a solution

(where fi,hom represent the homogenous solutions, i.e. those for which Lxfi,hom = 0)!

Example. Consider Eq. (13) for a static field, which is known as Poisson’s equation:

∇2φ(x) = −ρ(x) . (53)

Thus, Lx = ∇2 = ∂i∂i and g = −ρ in the above notation. Writing G and δ in terms
of their Fourier-transforms, Eq. (50) therefore reads

∇2

∫
d3k

(2π)3
eik·(x−y) G̃(k) = −

∫
d3k

(2π)3
eik·(x−y) |k|2 G̃(k) = −

∫
d3k

(2π)3
eik·(x−y) .

(54)
Hence, G̃(k) = 1/|k|2 and therefore

G(x− y) =

∫
d3k

(2π)3
eik·(x−y) G̃(k) (55)

=
1

4π2

∫ 1

−1

d cos θ

∫ ∞
0

d|k| ei cos θ|k||x−y| (56)

=
1

8π2

∫ 1

−1

d cos θ

∫ ∞
−∞

d|k| ei cos θ|k||x−y|︸ ︷︷ ︸
2π δ(cos θ|x−y|)=2π δ(cos θ)/|x−y|

(57)

Inserting the resulting G(x − y) = 1/4π|x− y| in Eq. (52), we find the familiar
solution of Eq. (53): The total potential is obtained by summing over all sources,

φ(x) =

∫
d3y

ρ(y)

4π|x− y|
. (58)



4.4 Complex Analysis

Complex, differentiable (i.e. holomorphic or analytic) functions exhibit a number of
fascinating properties. One of the central results of complex analysis is the residue
theorem, which we will make use of at some central places. Let Γ be a positively
oriented, simple closed contour in the complex plane (i.e. anti-clockwise, winding
number 1). For any function f(z) that is analytic inside (and on) Γ except for a finite
number of singular points z1, ..., zn, we then have∮

Γ

f(z) dz = 2πi
n∑
i=1

Res(f, zi) . (59)

Here, Res(f, zi) denotes the residue of f at zi, which can be defined as the coefficient
a−1 of the Laurent expansion around this point

f(z) =
∞∑

n=−∞

an(z − zi)n . (60)

In practice, the following rules help to determine the residue:

• If f has a simple (i.e. 1st order) pole at zi: Res(f, zi) = lim
z→zi

(z − zi)f(z)

• If f has a 1st order zero at zi: Res(1/f, zi) = 1/f ′(zi)

• If f has a pole of nth order at zi: Res(f, zi) = 1
(n−1)!

lim
z→zi

∂n−1

∂zn−1 [(z − zi)nf(z)]

Note that the residue theorem includes Cauchy’s famous integral theorem, which states
that

∮
f(z) dz = 0 for every holomorphic function.
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