F

Real Time and Emb

Software Quality Ass

L A T R VT
L A I A T N A T i
L L A A P Y
L A YL P
FLLPEE FL20ET FL080T 100007 11807
FLLPEE LRI LN 1NiiE i
L L R Y A Y P A Y i)
L L A P T A
LEEE 2REEE HEEE R HNN
1 17 s 1ir it
i 11 11 e £
1y 1 1 i1 111
i 1 11 117 1
1147 1777 1247 s 117
177 177 117 "7 "
17l 177 14 17/ "

1 i 1" s "

/7 1 1" /" /"

/7 G " /1 I’
1" 7" 1" 1" 1"

Copyright 1995-1999 Wind River Systems, Inc.

T 0ORMNWGADO

Development System

Host Based Shell

Version 2.0.2

T.B. Skaali, Department of Physics, University of Oslo)

UNIVERSITY
OF OSLO

5 2 UNIVERSITY
% & OF OSLO

Reference:

MOST OF THIS NOTE IS BASED ON A LECTURE GIVEN BY SVEIN
JOHANNESEN, ABB, IN 2009

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #11

© ABB Ltd. -3

Svein Johannessen

Imoni;rl: \
o:nimuo':" |

SQA and Security

What | am going to talk about

© Copyright year ABB.
All rights reserved. - 4

8/20/2011

m Why Software Quality Assurance helps avoiding security
Incidents

m Code examples of potential security holes

m SQA requirements for avoiding security incidents

m | will assume that you already have a working SQA regime

m Reflections on how to avoid the next security scare

J & &

So, what has SQA to do with Security?

All rights reserved. - 5 -

© Copyright year ABB.
8/20/2011

m Embedded software is almost exclusively written in the
“C” language which is a high risk language
m “C” was developed as an alternative to assembly language for

writing operating systems. It assumes that the programmer
knows what he/she is doing.

m “C” is almost always wrong in that assumption

m SQA is about writing professional code

m The devil is in the detalils...

m Virus writers and other cybercriminals exploit the results
of unprofessional code (sloppy coding practices)

J & &

Nailve Reasons for Unprofessional Code

All rights reserved. - 6 -

© Copyright year ABB.
8/20/2011

m ‘|t works perfectly in the lab”

= No wonder — in the lab everybody tries to make it work

m “| documented the restrictions to the parameters”

m Look for places in the documentation where it says "don’'t do
this”. Try as many variants of this as possible.

= ‘| will think about security issues when the code works”

= When the code works, you will be thinking of the next project.

J & &

Example 1. The Buffer Overflow Exploit

All rights reserved. - 7 -

© Copyright year ABB.
8/20/2011

m The strcpy() bomb

m A frequent root cause in Microsoft security bulletins, the “Buffer
Overflow” vulnerability is usually caused by uncritical use of the
standard “C” string copy function strcpy().

What this function does, is copying a string into a buffer. What it
does not do, is checking whether the string fits inside the buffer.
Therefore, strcpy() will happily keep copying the string data on
top of whatever data that are adjacent to the buffer. This
behavior causes all kinds of problems — from the obscure to the
catastrophic.

J & &

What can we learn from this example?

All rights reserved. - 8 -

© Copyright year ABB.
8/20/2011

m This vulnerability has been known for years, but
programmers still stumble into the same trap (can’t be
bothered to check the length of the input string)

m The code checker utility lint will not catch it, since it is a
legal call to a legal function (as usual, "C” gives you full
permission to shoot yourself in the foot)

m There has been a large paradigm shift in programming

m We used to live in a world where “stupid users” were blamed
when programs crashed.

m We now live in a world where criminals try to crash your
programs. You cannot shift the blame any longer

J & &

Example 2: The Null Pointer Exploit

All rights reserved. - 9 -

© Copyright year ABB.
8/20/2011

= The malloc() bomb

m Several “C” library functions (e.g. malloc()) return a NULL
pointer to indicate an error. Sloppy coding skips testing the
returned pointer for NULL and uses it as if it were a valid pointer.
Writing something into location 0x0000 (=NULL) - or close by —
usually introduces a catastrophic fault at an unrelated part of the
software.

m Usually, the interrupt vector table lives close to address 0x0000.

m Security experts expect NULL pointer exploits to be the next big
wave of cyber attacks.

J & &

What can we learn from this example?

All rights reserved. - 10 -

© Copyright year ABB.
8/20/2011

m Always check the value of returned pointers. NULL
pointers indicate an error!

m Additional checking may be needed on some CPU
architectures

m Several architectures crash (remember the picture of a bomb on
early Macintoshes?) if the pointer has incorrect alignment

m A popular architecture (ARM) does not crash, but returns a
wrong value when the pointer is out of alignment

m An Ethernet packet has a header of 14 or 18 bytes. This means
that if the start of the Ethernet packet is aligned on a longword
boundary, the data part will not be aligned.

J & &

SQA consequences

All rights reserved. - 11 -

© Copyright year ABB.
8/20/2011

m Make code review a mandatory part of the development
process

m The code reviewers must have instructions as to what to look for

m Extended code checkers (for example Splint — Safe
Programming lint) should be used by the code reviewers

m Such tools cannot do the whole job, since they are easily fooled
by clever and lazy programmers

J & &

Example 3: The Protocol Overflow Exploit

All rights reserved. - 12 -

© Copyright year ABB.
8/20/2011

m Overloading the Protocol Handler

m The classic example is the Denial-of Service attack where an
enormous amount of packets robs the protocol handler of CPU
and memory resources.

m Another example: If you have implemented a “return status”
function in your code with the implicit assumption that it will be
called at most every second, what happens when it is called 500
or 10 000 times a second?

J & &

What can we learn from this example?

All rights reserved. - 13 -

© Copyright year ABB.
8/20/2011

m Always document your assumptions. Then think about
what to do when those assumptions are violated.

m Implicitly this means that a software design document must be a
part of every software development project. This document is
where assumptions and exceptions must be discussed and
documented.

J & &

SQA consequences

All rights reserved. - 14 -

© Copyright year ABB.
8/20/2011

m Require a software design document for each code
module

m This document should contain all the assumptions used in
designing the module

m It should also contain a section on how the assumptions shall be
enforced

m When the requirement specifications for a piece of
software implies a security hole, document this clearly

m Try to show how the requirement specification can be altered to
avoid the security hole

J & &

Example 4. The Buffer Underflow Exploit

All rights reserved. - 15 -

© Copyright year ABB.
8/20/2011

m The recv() bomb

m Several high-level protocols use the recv() or recvfrom() calls to
handle data reception. Failing to properly check the return value
leaves you wide open to exploitation:

char rxbuf[sizeof(MyProtocol)];
union _sockaddr s i1nfo;
int rlen, addrlen;

while (ITerminated) {
memset(&s_info, 0, sizeof(s_info));
addrlen = sizeof(s_info.sa);
rlen = recvfrom(sock, rxbuf, sizeof(MyProtocol), O,
&s 1nfo.sa, &addrlen);
1T (rlen>0)
myProtocolHandler (rxbuf);

m Whatifrlenis 1? g %&

SQA consequences

All rights reserved. - 16 -

© Copyright year ABB.
8/20/2011

m Return values should be checked
m |t takes one code line.

m All versions of lint will catch ignored return values

® |[n some cases the return values contain no useful
information and can safely be ignored. This must be
documented in the code!

J & &

More SQA musings

All rights reserved. - 17 -

© Copyright year ABB.
8/20/2011

m The default scope of a function should be local (instead
of the default global scope “C” insists on)

m That way, they are invisible to criminals when you accidentally
release code containing debug symbols.

m Yes, there are people out there who inspect your files with all
kinds of tools to see what they can learn

m Examples: The DVD protection algorithm, the Sony rootkit, etc., etc.

J & &

Protecting against the next exploit

© Copyright year ABB.
All rights reserved. - 18

8/20/2011

m Protect the automation network against the internet
jungle

m Firewalls, Network Address Translation

m Protect the automation network against unauthorized
access

m Access Control Lists, encryption, authorization

m Protect automation modules against malicious
reprogramming

J & &

Final Words

All rights reserved. - 19 -

© Copyright year ABB.
8/20/2011

m Writing the actual code is only 10% of the job

m A large part of the total time should be spent ensuring that
“garbage in” does not result in “garbage out” or worse

m Take a lesson from the hardware developers!
m Designing a device is fun and fast

m Checking all the small details takes 90% of the time

J & &

5 #8% UNIVERSITY
wJf; OF osLO

INDUSTRIAL ELECTRONICS AND
EMBEDDED SYSTEMS

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #11

Communication, Availability,
Safety and Security

Software Quality Assurance (SQA) in
Industrial Electronics

Svein Johannessen

Core Themes in Industrial Electronics

Communication
— The area in consideration may be very large
Availability

— Shutdown due to equipment failure is not
accepted

Safety
— Protecting human beings from injury

Security
— Protecting the infrastructure from sabotage

Communication between devices

There are three basic device classes —
Controllers, Sensors and Actuators.

We need to transfer a information from the
sensors to the controller and from the
controller to the actuators.

For that, we use some transfer medium (wires,
fiber, air..)

And in order to interpret the information, we
need a set of protocols

Why use protocols at all

* Even a “perfect” hardware solution may need
some help since:

— Almost all communication solutions have frame
size limitations

— Flow control may be necessary
— Communication errors may occur

— Source and destination may be on different
hardware standards

Availability means “keep working”

* Always means that one fault is not allowed to
bring the system down

 This includes software faults!

e Especially required when:

— Repair is extremely expensive (satellites, sea-
bottom installations)

— Repair is impossible (Jupiter fly-by, downhole
installations)

Downhole installations

* Long distances (up to
10km below sea bottom)

* Horrible working
conditions (up to 225°C,
up to 1000 bar etc.)

* This is really trying to
communicate with hell!

Introducing redundancy

 Redundancy means that you duplicate critical
components

— This can mean anything from duplicated sensors
to duplicated subsystems

— It can also mean duplicated software

* In this case it means separate development teams,
different compilers, possibly different coding
languages...

* And the added complexity of deciding which part to
trust when the results differ

Giving up Is not an option

 When faced with an error, amateurs print an
error message and exit

* |In an industrial context, an error must be
handled by the software

— Therefore the error handling is an important part
of the software design

* Professional software relies on professional
software design

— Writing code without a design is the sure mark of
an amateur

Safety — “freedom from injury”

* In our case, the relevant standard is IEC 61508

* |tis titled "Functional safety of electrical/
electronic/programmable electronic safety-
related systems”

* The IEC 61508 standard defines a set of Safety
Integrity Levels (SIL) based on the probability of a
dangerous failure over time. The IEC 61508 SIL3
rating is considered the highest level of risk
reduction achievable using a single
programmable electronic system.

Facts about safety systems

* You cannot just implement a system and call it
“safe”, it has to be certified.

* This means that every part of the design must
be documented

— The certification, design and documentation part
is also applicable to the software

— The complete software solution (including the
RTOS) must be certified, not just one module

— For that reason, it is close to impossible to certify
existing software systems

Common safety design elements

e A “safe state” is defined (and certified)

— A train standing still at a station is in a safe state

* |In the case of an error, the system must
automatically go to the safe state

* The system is only let out of the safe state as
long as safety-proven set of inputs allow it

— If one or more inputs become unavailable, the
system must time out to the safe state

About availability and safety

* A system in the safe state is unavailable

* Therefore, safe inputs and outputs are usually
implemented using redundancy and validation

* The easiest way of implementing safe 1/0 is
usually through duplicated subsystems

— The inputs are combined in a safe way
— The outputs are combined using AND

Security — protecting the installation

* The Internet gave us freedom of information —
but it also gave criminals new opportunities

— Cyber-blackmail is a constant threat
* |n industrial systems, usually no confidential
data can be compromised

— But the systems can be brought to a standstill (loss
of revenue)

— Safety subsystems can be disabled (litigation)

Protecting against the next exploit

* Protect the automation network against the
internet jungle

— Firewalls, Network Address Translation

* Protect the automation network against
unauthorized access

— Access Control Lists, encryption, authorization

* Protect automation modules against malicious
reprogramming

Summing it all up

* |Industrial systems require professional
software

* Professional software is designed
— Error handling is an important part of the design

* Professional software checks the input
parameters and return values

— Avoid amateur errors like buffer overflow and
NULL pointer exploits

£ £9% UNIVERSITY
t Ul oF osLo

* Modern lab instrumentation and control systems are networked. In
the beginning nobody thought about the security risks that this
introduced

« What follows are some pages from a CERN Student lecture in
2009 by Stefan Luders

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #11

36

...about the Cyber-Security
of modern Control Systems

Dr. Stefan Luders (CERN Computer Security Team)
CERN Student Lectures
January 13th 2009

=i

LHC Beam Optics

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009
N |
Steer a beam of
- 85 kg TNT through
a 3mm hole 10000

times per second !

World’s largest
superconducting
installation
(27km @ 1.9°K)
worth 2B€

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009

(Sub-JDetectors
Data Acquisition

= W N°

TI‘I!]!IEI‘III!I

~

Hun control

llll‘ 'FE"-L .

g ‘J’ ‘\ -’

..u-?*"'

. o

Rhout 100 millon data channels

O

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009

ey, 7R

High Voltage

‘l"*

L T O

Radiation
sSmoke
Shiffer

. ADout ong million ontro channels

.............
v N

IS & D
O NTeless & s

BROEINeModhusylGE
DPE, FUTP & Telhet

W EehEYEmal

S

(522, e, [PLIE (PO o

(R)Evolution: The Past

Control Systems Under Attack !?” — Dr. Stefan Luders — January 13th 200

Administration,
At home, R
Remote site, ... |

| Visualisation
(SCADA)

Engineering
station

Fieldbus
(ModBus, PROFIbus)

Visualisation W NTT Operator

(SCADA) terminal Database,

Data historian,
JFile system, ...

Fieldbus
(ModBus, PROFIbus)

| NENTT j &8 £ mbedded device,
Direct connection) Field device, ...

or serial bus

Controller

o

(R)Evolution: Today

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009

Administration,
At home,
Remote site, ..

Firewall

Ethernet TCP/IP
(Office network)
‘@ AN
!g o VY 0 Dial-In
HS Wireless access pointé " Modem

Ethernet TCP/IP
(Controls network)

Ethernet TCP/IP
(Controls network)

“Controls” is not IT ! (2)

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009

“Office IT”

“Controls”

Changes

Patches & Upgrades

Antivirus Software

Reboots

Password Changes

frequent, formal &
coordinated

frequent

standard

standard

standard

rare, informal & not always
coordinated

infrequent or impossible
(needs extensive tests)

rare or impossible
(might block CPU)

rare or impossible
(processes will stop)

rare or impossible
(password “hardwired”)

1) T8 0 &) U St

“Control Systems Under Attack !?” — Dr. Stefan Liders — January 13th 2009

1 will use Google before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking dumb questions.
L will use Google before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking dumb questions.
www.mclburns.nl before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking dJumb questions.

1 will use Google before asking dumb questions. 1 will use Googlegz€nre
ashing dumb questions. 1 will use Google before ashir\g dumb qu
1 wdl vse Google bef'orc ashm dumb questions. 1 w.“ vse Gooe

1 will use Google beforc asking dumb questions. 1 will use Googim™
asking dumb questions. 1 will use Google before asking dumb s

-

