
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 – 2011 / #11

Real Time and Embedded Data Systems and Computing

Software Quality Assurance – Availability – Safety - Security

T.B. Skaali, Department of Physics, University of Oslo

MOST OF THIS NOTE IS BASED ON A LECTURE GIVEN BY SVEIN
JOHANNESEN, ABB, IN 2009

Reference:

2FYS 4220 / 2011 / Lecture #11

©
 A

B
B

 L
td

. -
3

SQA and SecuritySvein Johannessen

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

4
-

8/
20

/2
01

1

What I am going to talk about

 Why Software Quality Assurance helps avoiding security
incidents

 Code examples of potential security holes

 SQA requirements for avoiding security incidents
 I will assume that you already have a working SQA regime

 Reflections on how to avoid the next security scare

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

5
-

8/
20

/2
01

1

So, what has SQA to do with Security?

 Embedded software is almost exclusively written in the
“C” language which is a high risk language
 “C” was developed as an alternative to assembly language for

writing operating systems. It assumes that the programmer
knows what he/she is doing.

 “C” is almost always wrong in that assumption

 SQA is about writing professional code
 The devil is in the details…

 Virus writers and other cybercriminals exploit the results
of unprofessional code (sloppy coding practices)

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

6
-

8/
20

/2
01

1

Naïve Reasons for Unprofessional Code

 “It works perfectly in the lab”
 No wonder – in the lab everybody tries to make it work

 “I documented the restrictions to the parameters”
 Look for places in the documentation where it says ”don’t do

this”. Try as many variants of this as possible.

 “I will think about security issues when the code works”
 When the code works, you will be thinking of the next project.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

7
-

8/
20

/2
01

1

Example 1: The Buffer Overflow Exploit

 The strcpy() bomb
 A frequent root cause in Microsoft security bulletins, the “Buffer

Overflow” vulnerability is usually caused by uncritical use of the
standard “C” string copy function strcpy().

What this function does, is copying a string into a buffer. What it
does not do, is checking whether the string fits inside the buffer.
Therefore, strcpy() will happily keep copying the string data on
top of whatever data that are adjacent to the buffer. This
behavior causes all kinds of problems – from the obscure to the
catastrophic.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

8
-

8/
20

/2
01

1

What can we learn from this example?

 This vulnerability has been known for years, but
programmers still stumble into the same trap (can’t be
bothered to check the length of the input string)

 The code checker utility lint will not catch it, since it is a
legal call to a legal function (as usual, ”C” gives you full
permission to shoot yourself in the foot)

 There has been a large paradigm shift in programming
 We used to live in a world where “stupid users” were blamed

when programs crashed.

 We now live in a world where criminals try to crash your
programs. You cannot shift the blame any longer

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

9
-

8/
20

/2
01

1

Example 2: The Null Pointer Exploit

 The malloc() bomb
 Several “C” library functions (e.g. malloc()) return a NULL

pointer to indicate an error. Sloppy coding skips testing the
returned pointer for NULL and uses it as if it were a valid pointer.
Writing something into location 0x0000 (=NULL) - or close by –
usually introduces a catastrophic fault at an unrelated part of the
software.
 Usually, the interrupt vector table lives close to address 0x0000.

 Security experts expect NULL pointer exploits to be the next big
wave of cyber attacks.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

10
-

8/
20

/2
01

1

What can we learn from this example?

 Always check the value of returned pointers. NULL
pointers indicate an error!

 Additional checking may be needed on some CPU
architectures
 Several architectures crash (remember the picture of a bomb on

early Macintoshes?) if the pointer has incorrect alignment

 A popular architecture (ARM) does not crash, but returns a
wrong value when the pointer is out of alignment

 An Ethernet packet has a header of 14 or 18 bytes. This means
that if the start of the Ethernet packet is aligned on a longword
boundary, the data part will not be aligned.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

11
-

8/
20

/2
01

1

SQA consequences

 Make code review a mandatory part of the development
process
 The code reviewers must have instructions as to what to look for

 Extended code checkers (for example Splint – Safe
Programming lint) should be used by the code reviewers
 Such tools cannot do the whole job, since they are easily fooled

by clever and lazy programmers

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

12
-

8/
20

/2
01

1

Example 3: The Protocol Overflow Exploit

 Overloading the Protocol Handler
 The classic example is the Denial-of Service attack where an

enormous amount of packets robs the protocol handler of CPU
and memory resources.

 Another example: If you have implemented a “return status”
function in your code with the implicit assumption that it will be
called at most every second, what happens when it is called 500
or 10 000 times a second?

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

13
-

8/
20

/2
01

1

What can we learn from this example?

 Always document your assumptions. Then think about
what to do when those assumptions are violated.
 Implicitly this means that a software design document must be a

part of every software development project. This document is
where assumptions and exceptions must be discussed and
documented.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

14
-

8/
20

/2
01

1

SQA consequences

 Require a software design document for each code
module
 This document should contain all the assumptions used in

designing the module

 It should also contain a section on how the assumptions shall be
enforced

 When the requirement specifications for a piece of
software implies a security hole, document this clearly
 Try to show how the requirement specification can be altered to

avoid the security hole

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

15
-

8/
20

/2
01

1

Example 4: The Buffer Underflow Exploit

 The recv() bomb
 Several high-level protocols use the recv() or recvfrom() calls to

handle data reception. Failing to properly check the return value
leaves you wide open to exploitation:

char rxbuf[sizeof(MyProtocol)];
union _sockaddr s_info;
int rlen, addrlen;

while (!Terminated) {
memset(&s_info, 0, sizeof(s_info));
addrlen = sizeof(s_info.sa);
rlen = recvfrom(sock, rxbuf, sizeof(MyProtocol), 0,
&s_info.sa, &addrlen);

if (rlen>0)
myProtocolHandler(rxbuf);

 What if rlen is 1?

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

16
-

8/
20

/2
01

1

SQA consequences

 Return values should be checked
 It takes one code line.

 All versions of lint will catch ignored return values

 In some cases the return values contain no useful
information and can safely be ignored. This must be
documented in the code!

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

17
-

8/
20

/2
01

1

More SQA musings

 The default scope of a function should be local (instead
of the default global scope “C” insists on)
 That way, they are invisible to criminals when you accidentally

release code containing debug symbols.

 Yes, there are people out there who inspect your files with all
kinds of tools to see what they can learn
 Examples: The DVD protection algorithm, the Sony rootkit, etc., etc.

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

18
-

8/
20

/2
01

1

Protecting against the next exploit

 Protect the automation network against the internet
jungle
 Firewalls, Network Address Translation

 Protect the automation network against unauthorized
access
 Access Control Lists, encryption, authorization

 Protect automation modules against malicious
reprogramming

©
 C

op
yr

ig
ht

 y
ea

r A
B

B
.

A
ll

rig
ht

s
re

se
rv

ed
. -

19
-

8/
20

/2
01

1

Final Words

 Writing the actual code is only 10% of the job
 A large part of the total time should be spent ensuring that

“garbage in” does not result in “garbage out” or worse

 Take a lesson from the hardware developers!
 Designing a device is fun and fast

 Checking all the small details takes 90% of the time

T.B. Skaali, Department of Physics, University of Oslo

INDUSTRIAL ELECTRONICS AND
EMBEDDED SYSTEMS

20FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 21FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 22FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 23FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 24FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 25FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 26FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 27FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 28FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 29FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 30FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 31FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 32FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 33FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 34FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 35FYS 4220 / 2011 / Lecture #11

T.B. Skaali, Department of Physics, University of Oslo 36FYS 4220 / 2011 / Lecture #11

Networked instrumentation – a security issue
• Modern lab instrumentation and control systems are networked. In

the beginning nobody thought about the security risks that this
introduced

• What follows are some pages from a CERN Student lecture in
2009 by Stefan Lϋders

Control Systems Under Attack !?

…about the Cyber-Security
of modern Control Systems

Dr. Stefan Lüders (CERN Computer Security Team)
CERN Student Lectures

January 13th 2009

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

LHC Beam Optics

Steer a beam of
85 kg TNT through
a 3mm hole 10000
times per second !

World’s largest
superconducting
installation
(27km @ 1.9°K)
worth 2B€

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

Data Acquisition Control

The ATLAS Experiment
7000 tons
Ø22m × 43m
500M€ pure hardware
http://atlas.ch

The cavern:
53m × 30m × 35m
92m below ground

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

Control Systems for Experiments

The CMS Experiment
500M€ pure hardware
12500 tons, Ø15m × 22m
http://cmsinfo.cern.ch

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

(R)Evolution of Control Systems

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

(R)Evolution: The Past

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

(R)Evolution: Today

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

“Controls” is not IT ! (2)

Patches & Upgrades frequent infrequent or impossible
(needs extensive tests)

Antivirus Software standard rare or impossible
(might block CPU)

Reboots standard rare or impossible
(processes will stop)

Admin Rights to be avoided needs to run controls
processes

“Office IT” “Controls”

Password Changes standard rare or impossible
(password “hardwired”)

Changes frequent, formal &
coordinated

rare, informal & not always
coordinated

Dr. Stefan Lüders (CERN IT/CO) ― DESY ― 20. Februar 2007“Control Systems Under Attack !?” — Dr. Stefan Lüders — January 13th 2009

Thank you !

