
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220/9220 – 2011 / #1

Real Time and Embedded Data Systems and Computing

Introduction and baseline concepts

T.B. Skaali, Department of Physics, University of Oslo 2FYS4220/9220 - 2011 - Lecture #1

FYS 4220 / 9220 – 2011 version

• In 2010 the course was revised!
– Content: approximately 50/50 programmable logic (VHDL) / Real-Time –

Embedded systems
• VHDL lectures and lab course given by Jan Kenneth Bekkeng. See description

and information given by Bekkeng
• Real-Time / Embedded part given by Bernhard Skaali

• Real-Time and Embedded part:
– Impossible to find a single text book which covers the curriculum.

Therefore: the lectures are based on several sources and own
contributions. Curriculum ≡ lectures plus lab exercises

– Background required (wanted):
• Basic knowledge of computer electronics (FYS3230, FYS3240, IfI)
• Some programming knowledge in C / C++

– Teaching:
• Lectures
• Lab exercises on VME single board processors running the VxWorks Real-Time

Operating System (RTOS)

T.B. Skaali, Department of Physics, University of Oslo 3FYS4220/9220 - 2011 - Lecture #1

Some literature references

• [Ref. 1] Phillip A. Laplante, ”Real-Time Systems Design and Analysis”,
Third Edition, John Wiley & Sons / IEEE Press, 2004

– Dr. Laplante has more than 20 years experience in building, studying and teaching
real-time systems as well as long interactions with NASA, Lockheed-Martin, MIT, etc.

– http://www.personal.psu.edu/pal11/

• [Ref. 2] Alan Burns and Adny Wellings, ”Real-Time Systems and
Programming Languages, Third Edition – Ada 95, Real-Time Java and
Real-Time POSIX, Addison-Wesley, 2001 [B/W]

– http://www.cs.york.ac.uk/rts/books/RTSBookThirdEdition.html

• [Ref. 3] ”Real-Time Systems”, The International Journal of Time-
Critical Computing Systems, Springer

– http://www.springer.com/computer/communication+networks/journal/11241

• [Ref. 4] Embedded systems:
– http://www.eetimes.com/design/embedded
– http://www.eejournal.com/design/embedded

T.B. Skaali, Department of Physics, University of Oslo 4FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo 5FYS4220/9220 - 2011 - Lecture #1

Embedded systems courses at ETH Zurich

T.B. Skaali, Department of Physics, University of Oslo 6FYS4220/9220 - 2011 - Lecture #1

Embedded systems course at KTH Stockholm

T.B. Skaali, Department of Physics, University of Oslo 7FYS4220/9220 - 2011 - Lecture #1

What is Real-Time and Embedded Computing?

• In computer science, real-time computing (RTC), or "reactive
computing", is the study of hardware and software systems that
are subject to a "real-time constraint"—i.e., operational
deadlines from event to system response. By contrast, a non-
real-time system is one for which there is no deadline, even if
fast response or high performance is desired or preferred.

• The needs of real-time software are often addressed in the
context of real-time operating systems, and synchronous
programming languages, which provide frameworks on which
to build real-time application software. (Ref. Wikipedia)

T.B. Skaali, Department of Physics, University of Oslo 8FYS4220/9220 - 2011 - Lecture #1

What is Real-Time and Embedded Computing?

• An embedded system is a computer system designed to perform one
or a few dedicated functions, often with real-time computing
constraints. It is usually embedded as part of a complete device
including hardware and mechanical parts.
Embedded systems span all aspects of modern life and there are
many examples of their use: mobile phones, PDAs, MP3 players,
digital cameras, GPS receivers, household appliances, avionics
system, medical systems, etc. Embedded processors can be
microprocessors or microcontrollers. The program instructions written
for embedded systems are referred to as firmware, and are stored in
read-only memory or Flash memory chips. They run with limited
computer hardware resources: little memory, small or non-existent
keyboard and/or screen. (Ref. Wikipedia)

Many universities are incorporating embedded system concepts into their
electronic/informatics science curricula, some examples are shown on the
following pages.

T.B. Skaali, Department of Physics, University of Oslo 9FYS4220/9220 - 2011 - Lecture #1

Embedded products are found in:

• Industry
• Automotive
• Aerospace
• Medical systems
• Mobile systems
• Communication
• Networking
• Household products (dishwasher, etc)
• Media products – broadcasting
• Cameras
• ---- in other words, everythere ----

A very large scale control system for LHC at CERN is shown on next page

T.B. Skaali, Department of Physics, University of Oslo

Control Systems for CERN LHC Experiments

The CMS Experiment
500M€ pure hardware
12500 tons, Ø15m × 22m
http://cmsinfo.cern.ch

T.B. Skaali, Department of Physics, University of Oslo

TERMINOLOGY AND DEFINITIONS

11FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

System concepts
• A Real-time system is a mapping of a set of inputs to a set of

outputs according to given time constraints
– In most applications, a Real-time system never terminates, it runs «for

ever». However, the type and amount of input data, the algorithms, the
number of processes, interprocess communication, interrupt frequency etc
are numerous. This makes a realistic analysis of a Real-time system very
difficult. Simulation can be an important tool.

12

Computer system
Processing

Input

Monitoring

Control out

T.B. Skaali, Department of Physics, University of Oslo 13FYS4220/9220 - 2011 - Lecture #1

Case: signal processing in a Data Acquisition system

T.B. Skaali, Department of Physics, University of Oslo

Some basic definitions borrowed from Laplante [Ref. 1]

14

The time between the presentation of a set of inputs to a system
(stimulus) and the realization of the required behaviour (response),
including the availability of all associated outputs, is called the response
time of the system

A Real-time system is a system that must satisfy explicit (bounded)
response-time constraints or risk severe consequences, including failure.

A failed system is a system that can not satisfy one or more of the
requirements stipulated in the formal system specification.

A Real-time system is one whose logical correctness is based on both the
correctness of the outputs and their timeliness.

T.B. Skaali, Department of Physics, University of Oslo

Characterisation of Real-time systems

Obviously there is a difference regarding possible consequences for i) a data
acquisition system at a LHC experiment at CERN or ii) an aeroplane control system if
a time constraint is not met. (In fact, for i) one knows that some data will be lost!).

Real-time systems are typically characterized as hard, firm and soft. The following
definitions are taken from [Ref. 1].

15

A hard Real-time system is one in which failure to meet a single deadline
may lead to complete and catastrophic system failure.

A firm Real-time system is one in which a few missed deadlines will not
lead to total failure, but missing more than a few may lead to complete
and catastrophic system failure.

A soft Real-time system is one in which performance is degraded but not
destroyed by failure to meet response time constraints.

T.B. Skaali, Department of Physics, University of Oslo 16FYS4220/9220 - 2011 - Lecture #1

Reliability, availability, safety and security

• Reliability, availability, safety and security are other important
characteristics of Real-time systems

• In particular, for hard Real-time systems, one must guarantee
high to extreme reliability.

• Safe
– An absolute requirement where life or environment may be endangered

(but still such systems fails from time to time…). However, a 100% safe
aeroplane is the one which never flies!

• These aspects of Real-time systems will be discussed in a later
lecture.

T.B. Skaali, Department of Physics, University of Oslo

DESIGN AND IMPLEMENTATION ISSUES

17FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

Real-time computer systems

• Real-time and embedded systems are built using a very wide
range of hardware, software, computer languages, sensors and
instrumentation .

• The simplest system one can imagine is a single control loop
on a microprocessor using polling.

• In this course we will discuss computer systems that support
concurrent processing under control of a Real-time operating
system (RTOS). Whether the computing hardware is a
processor chip or a «soft-core» processor implemented in a
FPGA is irrelevant.

18

T.B. Skaali, Department of Physics, University of Oslo

Time, Events and Determinism [see also Ref.1]

19

As the physicists know, time always move forward. In a Real-time
system the occurrence of an activity may be in absolute calendar time or
relative to another activity, for instance an interrupt. The baseline for
designing a Real-time system is to define and understand the basis for
timing constraints.

External input as well as process activity in a computer system, say
inter-process communication, will result in a change of the flow of the
execution of a computer program.

Definition: An occurrence that causes the program counter to change non-
sequentially is considered a change of flow-of-control and thus an event.

Definition: In scheduling theory (later lecture), the «release» time of a
processing activity is similiar to an event. The release time is the time at
which an instance of a scheduled task is ready to run, and is generally
associated with an interrupt, either from a clock or from data.

T.B. Skaali, Department of Physics, University of Oslo

Synchronous and Asynchronous Events [see also Ref.1]

20

Synchronous events are those that occur at predictable times in the
flow-of-control. An example is a trap instruction that triggers the kernel.

Asynchronous events occur at unpredictable times and are usually
caused by external interrupts.

Is a clock that gives an interrupt every 20 msec a synchronous event? It
is a periodic event, but the point in time where its interrupt routine
start to process depends on other activities in the computer, for instance
if processing is active on a higher interrupt priority level. Hence, a clock
driven event must be considered as asynchronous.

Events that do not occur at regular intervals are aperiodic. Aperiodic
events that occur very infrequently are called sporadic.

A major problem in scheduling Real-time processes is how to estimate
the effect of non-periodic events.

T.B. Skaali, Department of Physics, University of Oslo

COMMON MISCONCEPTIONS

21FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo 22FYS4220/9220 - 2011 - Lecture #1

Some misconceptions as listed by Laplante (Ref. 1)

• Real-time systems are synonymous with “fast” systems!
• True that many hard real-time systems must have response times of millisec or shorter.

However, the deadline for a ticket reservation system is seconds.

• Rate-monotonic analysis has solved the “real-time problem”!
– In a rate-monotonic system the process priorities are assigned according to the cyclic

frequency of execution. Studied since the 70’s, easy to analyze, but represents an ideal
environment seldom found in real life.

• There are universal, widely accepted methodologies for Real-time
systems specification and design!

– “Even after more than 30 years of research there is no methodology available that
answers all the challenges of real-time specification and design for all the time and for all
applications”

• There is no need to build a real-time operating system, because many
commercial products exist!

– Indeed, there are many excellent RT-OS’s, but for a small embedded system they may be
an overkill.

• The study of real-time systems is mostly about scheduling theory!
– Counting up scientific papers on Real-Time computing on may indeed get this impression!

T.B. Skaali, Department of Physics, University of Oslo

CASE: DATA ACQUISITION SYSTEM AT
CERN LHC EXPERIMENT

23FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

The ALICE detector at CERN/Large Hadron Collider

24FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

The ALICE detector
• ALICE is one of the four experiments at the circular Large Hadron Collider

(LHC) at CERN. In the LHC protons or lead ions are accelerated to almost the
speed of light and steered to collide at the center of the detectors. A collision
creates an enormous energy density in a very small volume (”fireball”), which
almost immediately is converted into radiation, see next page.

• The task of the sensors and data acquisition (DAQ) system is to measure the
position, energy and type of radiation from the ”fireball”.

• A pictorial organization of the data stream is shown on the second page.
• The architecture of the ALICE DAQ data system is shown on the third page. A

central component not shown is the ”Trigger system” that defines when data
shall be read out from the front-end electronics by selecting the most interesting
physics signals. The data streams from the top, showing how data records from
the sub-detectors are merged to a complete data set (”event”) and written onto
mass storage for off-line analysis. The labels stand for processing activities or
buffer memories. The total number of processors is several thousand. The
system interconnect is Gigabit Ethernet.

25

T.B. Skaali, Department of Physics, University of Oslo

Simulated radiation after collision in LHC between two Pb nuclei
The radiation passes through detectors which register sufficient number of space points to reconstruct
the type and path of the radiation. That implies a very large number of detector elements!

CERN Jan 200926FYS4220 / 9220 -2010 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

CERN Trigger -> Data Acquisition -> Offline

Drawing by S. Chapeland

Trigger (decision) + Data Acquisition (action) – Processing

Collision Detectors Event Complete Data Reconstruction &
Fragments Event Storage Analysis

Online Offline

CERN Jan 200927FYS4220 / 9220 -2010 -Lecture #1

Ultrafast processing of selected data in the trigger system decides whether the data from a collision
shall be read out or not. Only a few of the collisions give interesting physics data!

T.B. Skaali, Department of Physics, University of Oslo

GDC TDSM

CERN ALICE DAQ architecture
CTP

LTU

TTC

FERO FERO

LTU

TTC

FERO FERO

LDCLDC

BUSY BUSY

Rare/All

Event
Fragment

Sub-event

Event

File

Storage Network

TDS
PDS

L0, L1a, L2

L0, L1a, L2

360 DDLs

D-RORCD-RORC

EDM

LDC

D-RORC D-RORC

Load Bal. LDC LDC

D-RORC D-RORC

HLT Farm

FEPFEP

DDL

H-
RORC

10 DDLs

10 D-RORC

10 HLT LDC

120 DDLs

DA
DQM DSS

Event Building Network (merges detector data from one collision to a complete data structure)

425 D-RORC

130 Detector LDC

30 GDC
10 TDSM

18 DSS20 DA/DQM

25 TDS

Archiving on Tape
in the Computing
Centre (Meyrin)

CERN Jan 2009
28FYS4220/9220 - 2011 - Lecture #1

A CERN LHC experiment has around 20 million electronic channels to read out

T.B. Skaali, Department of Physics, University of Oslo 29FYS4220/9220 - 2011 - Lecture #1

Concurrent activities

• The DAQ system illustrated on the previous pages is structured
into a large number of concurrent parallel activities

– Processing interrupts from the front-end electronics
– Data buffer handling, for instance multiple buffering to avoid dead time
– Moving data from buffers onto data links
– Receiving data in the processors
– Doing something with the data, filtering, formatting, etc
– Writing processed data onto mass storage
– Plus activities like monitoring, error handling, etc, etc

• Concurrency will be discussed in Lecture #2
• A control system also implements a feedback to the input

process. Control algorithms are not covered in FYS 4220.

T.B. Skaali, Department of Physics, University of Oslo

THE CONCEPT OF A PROCESS

30FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo 31

The ”process”
• Process: the execution of a running program

– Logical unit scheduled and controlled by the operating system. Also called
task in VxWorks.

• Comprises the code, data, allocated resources, and a process descriptor
• Interference with other processes only through system calls

– However, in a system without memory protection, a process may have full
access to other processes’ memory (”flat memory”)!

– Thread (”tråd”): a subprocess within a process, sharing it’s resources.
• Shorter context switching time for thread->thread than for process->process !

• The process descriptor, a data structure that
– keeps the process attributes and information during its lifespan, like

• Process attributes
• Process relationships
• Process memory space
• File management
• Communication facilities
• Signal management
• Resource limits
• Scheduling related fields

FYS4220/9220 - 2010 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

REAL-TIME OPERATING SYSTEMS

32FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo 33FYS4220/9220 - 2011 - Lecture #1

Choice of RTOS for the lab exercises

• Why use VxWorks and not Linux?
– VxWorks from Wind River is an industry leader in Real-Time systems
– It offers a very wide choice of software components
– Based on host – target configuration. System development is done on a

host computer, typically a PC. The excutable code is downloaded to the
target processor.

– Excellent GUI (Graphical User Interface)
– However, VxWorks is a rather expensive solution,
– so, for systems which are not hard Real-Time, Linux is a very good, and

much cheaper,choice
– For more info on Wind River products, see http://www.windriver.com/

• Lab exercises
– Implementation of some important kernel services to be discussed in the

lectures

T.B. Skaali, Department of Physics, University of Oslo 34FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo

HARDWARE AND SOFTWARE

35FYS4220/9220 - 2011 - Lecture #1

T.B. Skaali, Department of Physics, University of Oslo 36FYS4220/9220 - 2011 - Lecture #1

Computer architecture and busses

• FYS4220 is not a computer architecture course, but computing
hardware and electronics are obviously integral components of
Real-time and Embedded computing

• Elements of computer and bus hardware are therefore
integrated into many of the lectures as well as the lab exercises

• You can not design and implement Real-time / Embedded
systems without touching hardware! In fact, this is also great
fun!

T.B. Skaali, Department of Physics, University of Oslo

Software

• The choice of a programming language is an important
parameter for building Real-time systems. In this course the C
language is used in the lab exercises, for several reasons: i) C
is a hardware-near language, ii) it is extensively used in
industry, iii) the amount of code to be written is small, and iv)
FYS4220 is not an Informatics course.

• Real-Time system design is a complex discipline in computer
systems engineering, based on elements from Control Theory,
Programming Languages, Scheduling Theory, Algorithms,
Queing Theory, Operating Systems, Software Engineering,
Computer Architecture and Data Structures [Ref. 1]. It is
obvious that FYS4220 can not cover all these fields!

37

