
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 – 2011 / #2

Real Time and Embedded Data Systems and Computing

Concurrency and concurrent systems



T.B. Skaali, Department of Physics, University of Oslo 2FYS4220/9220 - 2011 - Lecture #2

Concurrency 

• Computer science defines concurrency as a property of 
systems where several processes are executing at the same 
time, and may or may not interact with each other.
– The above definition are neither very precise nor complete!

• What does ”at the same time” mean?
– In a single processor it is obvious that only one process can execute at a 

time.  This means that concurrent activities must be given time slices such 
that it seems that they are running in parallell.

• What is meant by ”interact with each other” ?
– Will be covered in later lectures – interprocess communication

• What is the relation between Real Time and Concurrent systems? 
• What is the environment of a concurrent system: processors, 

communication, etc?
• How are common resources distributed?

– A classic: http://en.wikipedia.org/wiki/Dining_philosophers_problem



T.B. Skaali, Department of Physics, University of Oslo 3FYS4220/9220 - 2011 - Lecture #2

True Concurrency vs. Pseudo-Concurrency

• In a single processor, concurrent external activities must be 
”mapped” as pseudo-concurrent sequential processes.The 
timing requirements is met when all the sequential proceesses 
can react within the given deadlines. This may be difficult to 
prove for hard Real-Time systems.

• True concurrency requires parallell processing in separate 
processors, either a multi-processor system or multi-CPUs 
implemented as soft cores in a FPGA.

• Whatever the solution, process-process interaction 
(communication) greatly complicates the implementation and 
analysis of a concurrent system.  



T.B. Skaali, Department of Physics, University of Oslo 4FYS4220/9220 - 2011 - Lecture #2

Real Time - Concurrent systems 
• Definition of a Real Time system, ref. lecture #1:

– A Real-Time system is any information processing system which 
has to respond to externally generated input stimuli within a finite 
and specified period, and the correctness depends not only on the 
logical result but also the time it was delivered

• A dedicated (embedded) system using a micro-controller to 
read out data at a fixed rate or from interrupts is a Real Time 
system, but is not a concurrent system if all processing is done 
within the same process

• Vice versa: a concurrent system where the correctness does 
not really depend on timing constraints, is not a Real Time 
system

• However, in general a Real Time system is a concurrent 
system, where each Real Time activitiy is mapped into a 
process (or a thread, or a ”task” in VxWorks dialect)



T.B. Skaali, Department of Physics, University of Oslo 5FYS4220/9220 - 2011 - Lecture #2

Concurrent programming
• The name given to programming notation and techniques for 

expressing potential parallelism and solving the resulting 
synchronization and communication problems

• For Real-Time systems the physical activities are mapped into 
a number of separately executing programs, processes
– Note the distinction between the program code and the execution 

of this code within the context of a process. The same code can be 
executed by several processes, operating on separate data.

• All Real-Time systems are inherently concurrent — physical 
devices operate in parallel in the real world

• So, how are the synchronization and communication problems 
solved?
– Note that these problems are basically the same whether one 

implements the processes on a single computer, or if the activities 
are spread on separate processors!



T.B. Skaali, Department of Physics, University of Oslo

The simplest system – a single process

• Some measuring/control tasks may be so trival that a single 
execution thread solution is sufficient

• Typically this is a case where a measurement of a single value 
is done at regular intervals

• The time of the next measurement is then determined by polling 
the value of a timer, eventually that the thread is woken up by a 
timer interrupt

• A typical implementation is to use a microcontroller, they are 
available from 4-bits architecture and upwards

• A well known product is the PICTM microcontroller family from 
Microchip http://www.microchip.com

6FYS4220/9220 - 2011 - Lecture #2



T.B. Skaali, Department of Physics, University of Oslo 7FYS4220/9220 - 2011 - Lecture #2

PICs are popular with both industrial developers and hobbyists alike due to their low cost, wide availability, large user 
base, extensive collection of application notes, availability of low cost or free development tools, and serial 
programming (and re-programming with flash memory) capability. Microchip announced on February 2008 the 
shipment of its six billionth PIC processor.



T.B. Skaali, Department of Physics, University of Oslo 8FYS4220/9220 - 2011 - Lecture #2

An simple alternative to concurrent programming?

• An alternative is to use sequential programming techniques
• The programmer must construct the system so that it involves the 

cyclic execution of a program sequence to handle the various 
concurrent activities, see principle on next two pages [Ref. 2]

• This complicates the programmer's already difficult task and involves 
him/her in considerations of structures which are irrelevant to the 
control of the activities in hand

• The resulting programs will be more obscure and inelegant
• It makes decomposition of the problem more complex
• Parallel execution of the program on more than one processor will be 

much more difficult to achieve
• The placement of code to deal with faults is more problematic
• However, for a small dedicated embedded system this approach may 

be the simplest one!



Cyclic Executive

loop
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_c;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_d;
procedure_for_e;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_c;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_d;

end loop;



Time-line for Process Set

a b c

Interrupt

a b d

Interrupt

e a b c

Interrupt Interrupt



T.B. Skaali, Department of Physics, University of Oslo 11FYS4220/9220 - 2011 - Lecture #2

Concurrent programming

• Real-Time  / embedded software systems may be anything 
from a few thousand to millions of lines of code

• Languages used: numerous, a few examples:
– CORAL 66 (Computer  On-line Real-time Applications Language), from 1964, 

based on Algol 60
– RTL/2: 1972, based on Algol 68
– JOVIAL (Jules Own Version of the International Algorithmic Language) :  similiar 

to Algol, 1959, devloped for military aircraft electronics, still in use
– Then, there is C and C++, probably the most popular languages 

today
• However, these languages are not Real-Time systems as such, 

they depend on support from an operating system!



T.B. Skaali, Department of Physics, University of Oslo 12FYS4220/9220 - 2011 - Lecture #2

Concurrent languages

• High level concurrent languages, requires no Operating System 
support!

• Ada, CHILL, Modula-2, Real-Time Java
– Ada is a structured, statically typed, imperative, and object-

oriented high-level computer programming language. It was 
originally designed by a team led by Jean Ichbiah of CII Honeywell 
Bull under contract to the United States Department of Defense 
during 1977–1983 to supersede the hundreds of programming 
languages then used by the DOD. Ada addresses some of the 
same tasks as C or C++, but Ada is strongly-typed (even for 
integer-range), and compilers are validated for reliability in 
mission-critical applications, such as avionic software. Ada was 
named after Ada Lovelace, who is often credited with being the 
first computer programmer. Ada is an international standard; the 
current version (known as Ada 2005) is defined by joint ISO/ANSI 
standard (ISO-8652:1995), combined with major Amendment 
ISO/IEC 8652:1995/Amd 1:2007. (ref. Wikipedia)



T.B. Skaali, Department of Physics, University of Oslo 13FYS4220/9220 - 2011 - Lecture #2

Ada ”Hello World”

• File: hello_world_1.adb
with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is
begin

Put_Line("Hello, world!"); 
end Hello; 

The with statement adds the package Ada.Text_IO to the program. This package comes with every Ada compiler and contains 
all functionality needed for textual Input/Output. The with statement makes the declarations of Ada.Text_IO available to 
procedure Hello. This includes all types of Ada.Text_IO, the subprograms of Ada.Text_IO and everything else that is declared in 
Ada.Text_IO for public use. In Ada, packages can be used as toolboxes. Text_IO provides a collection of tools for textual input 
and output in one easy-to-access module. Here is a partial glimpse at package Ada.Text_IO
package Ada.Text_IO is

type File_Type is limited private;
-- more stuff
procedure Open(File : in out File_Type;

Mode : File Mode;
Name : String;
Form : String := "");

-- more stuff
procedure Put_Line (Item : String);
-- more stuff

end Ada.Text_IO;
(ref. Wikipedia)



T.B. Skaali, Department of Physics, University of Oslo 14FYS4220/9220 - 2011 - Lecture #2

Real-Time Java

• Java executes in a virtual machine: it is platform independent
• Java and Real-Time Java: 

http://en.wikipedia.org/wiki/Real-Time_Java
http://java.sun.com/developer/technicalArticles/Interviews/Bollella_qa2.html

• 17.1.1 Hello.java (ref. Forelesning H. Haugerud, Ifi; 19/3-07)
$ cat Hello.java 
class Hello 
{ 

public static void main(String args[]) 
{ 

System.out.println("Java: Hello world!"); 
} 

} 



T.B. Skaali, Department of Physics, University of Oslo 15FYS4220/9220 - 2011 - Lecture #2

Some terminology

• A concurrent program is a collection of autonomous sequential 
processes, executing (logically) in parallel 

• Each process has a single thread of control
• The actual implementation (i.e. execution) of a collection of processes 

usually takes one of three forms. 
Multiprogramming

– processes multiplex their executions on a single processor
Multiprocessing

– processes multiplex their executions on a multiprocessor system 
where there is access to shared memory

Distributed Processing
– processes multiplex their executions on several processors which 

do not share memory 
(ref. B&W)



T.B. Skaali, Department of Physics, University of Oslo 16FYS4220/9220 - 2011 - Lecture #2

Operating system environment

• All (real) operating systems (OS) provide processes 
• A key issue is to avoid destructive interference between 

processes
• The OS therefore implements an environment which can be 

called a virtual machine. A user process can not directly access 
other processes, and neither can access memory space 
outside its own space if a memory protection scheme is 
implemented
– Memory protection requires hardware support by the processor

• However, in Real-Time applications it may be useful (however 
potentially dangerous but quite interesting…) that a process 
can access any part of the physical memory. Such a system is 
often called a ”flat memory”. Used by VxWorks.



T.B. Skaali, Department of Physics, University of Oslo 17FYS4220/9220 - 2011 - Lecture #2

Process states – a simple model

Created

Non-existingNon-existing

Initializing

Executable

Terminated

© Alan Burns and Andy Wellings, 2001



T.B. Skaali, Department of Physics, University of Oslo 18FYS4220/9220 - 2011 - Lecture #2

Processes vs. threads

• A key characteristic for Real-Time OS is the context switching 
time, i.e. the time needed for freezing one process and starting 
another one
– However, a process context switch is relatively costly in time, 

because much information needs to to stored when a process is 
freezed, and the same amount of information is to be retrieved 
when before another process can be started. This is especially 
true in a memory protected environment

• Simply said: a thread is a process within a 
process. As such it has access to the same 
memory space, and the context switching 
from one thread to another will be shorter 
than for process to process



T.B. Skaali, Department of Physics, University of Oslo 19FYS4220/9220 - 2011 - Lecture #2

Multithreading
• Multithreading is a popular programming and execution model that allows 

multiple threads to exist within the context of a single process, sharing the 
process' resources but able to execute independently. The threaded 
programming model provides developers with a useful abstraction of concurrent 
execution. However, perhaps the most interesting application of the technology 
is when it is applied to a single process to enable parallel execution on a 
multiprocessor system.

• This advantage of a multithreaded program allows it to operate faster on 
computer systems that have multiple CPUs, CPUs with multiple cores, or 
across a cluster of machines. This is because the threads of the program 
naturally lend themselves to truly concurrent execution. In such a case, the 
programmer needs to be careful to avoid race conditions, and other non-
intuitive behaviors. In order for data to be correctly manipulated, threads will 
often need to rendezvous in time in order to process the data in the correct 
order. Threads may also require atomic operations (often implemented using 
semaphores) in order to prevent common data from being simultaneously 
modified, or read while in the process of being modified. Careless use of such 
primitives can lead to deadlocks.

(ref. Wikipedia)



T.B. Skaali, Department of Physics, University of Oslo 20FYS4220/9220 - 2011 - Lecture #2

Execution of Real Time processes – how?  

• A process can be executed, or resumed after a wait, by:
– User/operator command
– Data interrupt, for instance from the Analog-to-Digital converter
– By a clock (timer), typical for a periodic execution

• Timer interrupt
• On a given date and time

– By a signal or message from another process
• In this case one talks about a parent-child relationship. A child can in 

due course start up a new child, and so on.

• If several processes want to execute at the same time, a 
mechanism is required to select which process shall get the CPU
– The situation is somewhat blurred in a multi-cpu processor, there 

one can of course have truly parallell execution, provided that all 
other resources are available. To simplify the discussion, let us 
consider single CPU systems for the time being



T.B. Skaali, Department of Physics, University of Oslo 21FYS4220/9220 - 2011 - Lecture #2

Concurrent systems environment

• In order that processes are executed truly simultaneous, they 
must run on separate processors
– In most cases this is not feasible because it may imply a very large 

number of processors, and interprocess communication may 
become a bottleneck in itself

• An appearance of concurrency may be implemented by 
interleaving separate processes on a single processor with a 
multi-tasking OS
– The requirement is that the system has sufficient resources for that 

the processes can be executed according to their timing 
specifications

• But, how can one know that?
– Since the processes can interact with each other while executing, 

the number of possible execution paths in the system can be 
extremely large, and the resulting behavior can be very complex.



T.B. Skaali, Department of Physics, University of Oslo 22FYS4220/9220 - 2011 - Lecture #2

Difficulties with concurrency – ”a can of worms”

• Policy for allocation of shared resources between processes of 
different priorities:
– CPU
– Memory
– Input/output devices

• Race condition may result in unpredictable behavour
• Mutual exclusion can prevent race conditions, but may in turn 

lead to:
– Deadlock

• The processes are locked in a passive state. Two processes compete 
for two resources, and after each of them have reserved one of the 
resources they discover that the other resource is taken!

– Starvation
• The processes execute without advancing, for instance by endless 

testing on a flag



T.B. Skaali, Department of Physics, University of Oslo 23FYS4220/9220 - 2011 - Lecture #2

A VxWorks example - I

• VxWorks case: three processes are started from routine Alfred, 
using the same code of routine controller()

(void) controller  (par)
{
--- do something according to ”par”
}

(void) Alfred()
{
…..
/* ”P1”  task name, pr1 priority, stack space, (FUNCTR)<start_address>, par */
taskSpawn (”P1", pri1, 0, stack1, (FUNCPTR)controller, par1,…);
taskSpawn (”P2", pri2, 0, stack2, (FUNCPTR)controller, par2,…);
taskSpawn (”P3", pri3, 0, stack3, (FUNCPTR)controller, par3,…);
…..
}



T.B. Skaali, Department of Physics, University of Oslo 24FYS4220/9220 - 2011 - Lecture #2

A VxWorks example - II

• Now, how are the concurrent sequential VxWork tasks P1, P2 
and P3 executed? (In a non-Real-Time system one would not worry too much 
about that, just hoping that they could enevtuall carry out their jobs)

– Assuming the very simplistic case with 1) no interaction between the tasks 
and 2) no resource competition except for the CPU, the execution will be 
determined by the scheduling algorithm, where the process priority is a key 
parameter

• Scheduling will be covered in a later lecture 
– If 1) or 2) are not true then there is no clear-cut answer!
– Below is part of a code that will be discussed in a coming lecture, ”plusx” 

and ”minusx” are program units. An excerpt of the processor activity is 
shown on next page

#define P_PRI 200
#define M_PRI 200

/* enable or disable Wind round-robin*/
kernelTimeSlice (1);
Pid  = taskSpawn ("tP",   P_PRI,  0, 1000, (FUNCPTR)plusx,     0,0,0,0,0,0,0,0,0,0);
Mid = taskSpawn ("tM", M_PRI, 0, 1000, (FUNCPTR)minusx, 0,0,0,0,0,0,0,0,0,0);

}



T.B. Skaali, Department of Physics, University of Oslo 25FYS4220/9220 - 2011 - Lecture #2

After tP and tM have 
been dispatched from 
process interactive 
process t7 through 
tExcTask they execute 
on a round-robin basis 
with time slice 16.67ms, 
which is the period of 
the Real-Time clock



T.B. Skaali, Department of Physics, University of Oslo 26FYS4220/9220 - 2011 - Lecture #2

Blown up part 
showing Interrupt 
processing and task 
execution. 
Interrupt6 is 
Real-time 60Hz 
clock, Interrupt3
is net operations, 
the host-target 
communication 
runs over Ethernet.



T.B. Skaali, Department of Physics, University of Oslo 27FYS4220/9220 - 2011 - Lecture #2

Case: multiple independent data streams

• The three data processing streams are independent, there is no 
communication between them.

Data source 1 Process 1

Data source 2 Process 2

Data source 3 Process 3



T.B. Skaali, Department of Physics, University of Oslo

• The three data processing streams are coupled via the 
requirement of writing data to a common buffer. This is a very 
different problem: how is the access to the common buffer 
controlled, and how does the processes know that a data record 
has been properly received by the buffer process?

28FYS4220/9220 - 2011 - Lecture #2

Case: multiple interacting data streams

Data source 1 Process 1

Data source 2 Process 2

Data source 3 Process 3

Data buffer

Buffer process



T.B. Skaali, Department of Physics, University of Oslo 29FYS4220/9220 - 2011 - Lecture #2

Concurrent programming constructs

• The mapping of concurrent execution through the process 
concept

• Process synchronization
• Interprocess communication
• Interaction of processes:

– Independent
• No communication with other processes

– Cooperating
• Synchronizing their activities through communication

– Competing 
• Resource allocation 



T.B. Skaali, Department of Physics, University of Oslo 30FYS4220/9220 - 2011 - Lecture #2

Concurrent execution

• Models of concurrencies:
– Structure

• Static: number of processes is fixed and known at Build time
• Dynamic: processes are created (and deleted) at any time

– Level of parallelism
• Flat:processes are defined at the outmost level of the program text, as 

for C/POSIX
• Nested: processes are allowed to be defined within other processes, 

as for Ada and Java



T.B. Skaali, Department of Physics, University of Oslo 31FYS4220/9220 - 2011 - Lecture #2

POSIX

• POSIX (or "Portable Operating System Interface“ is the 
collective name of a family of related standards specified by the 
IEEE to define the Application Programming Interface (API) for 
software compatible with variants of the Unix operating system. 
Originally, the name stood for IEEE Std 1003.1-1988. The 
family of POSIX standards is formally designated as IEEE 1003
and the international standard name is ISO/IEC 9945. The 
standards emerged from a project that began in 1985. The term 
POSIX was suggested by Richard Stallman in response to an 
IEEE request for a memorable name!

• So, POSIX is not an OS, but an API! The API includes Real-
Time Services, Threads interface, Real-Time extensions, etc



T.B. Skaali, Department of Physics, University of Oslo 32FYS4220/9220 - 2011 - Lecture #2

POSIX upgrade 1b: Real-Time extensions

• Priority Scheduling 
• Real-Time Signals 
• Clocks and Timers 
• Semaphores 
• Message Passing 
• Shared Memory 
• Asynch and Synch I/O 
• Memory Locking
• Some fully POSIX compliant OS: LynxOS (RTOS), MAC OS X, 

Windows XP and Vista
• Mostly compliant: Linux
• Some compliant: VxWorks



T.B. Skaali, Department of Physics, University of Oslo 33FYS4220/9220 - 2011 - Lecture #2

Process initialization

• When a process is created, it may need to be supplied with 
information required for its execution. 

• Two ways of supplying this information are:
• 1) Pass the information in the form of parameters  to the 

process, as in the VxWorks taskSpawn(….)
– Name
– Entry point
– Priority
– Memory (stack) space
– Application specific parameters

• 2) Communicate with the process after it has started its 
execution



T.B. Skaali, Department of Physics, University of Oslo 34FYS4220/9220 - 2011 - Lecture #2

Process termination

• The circumstances can be summarized as follows:
– Completion of execution
– Self-terminate statement
– Abortion through the explicit action from another process
– Occurrence of an error condition which is not trapped
– When no longer needed
– Or the process runs forever

• For process management, cf. VxWorks taskLib



T.B. Skaali, Department of Physics, University of Oslo 35FYS4220/9220 - 2011 - Lecture #2

Parent/child and nested processes

• These structures greatly complicates the rules of interaction 
between the processes:
– Hierarchies of processes can be created and inter-process 

relationships formed
– For any process, a distinction can be made between the process 

(or block) that created it and the process (or block) which is 
affected by its termination

– The relationship is know as parent/child and has the attribute that 
the parent may be delayed while the child is being created and 
initialized

– A parent program cannot terminate until all its processes have 
terminated

• How can the parent know this? Follow a coming lecture!



T.B. Skaali, Department of Physics, University of Oslo 36FYS4220/9220 - 2011 - Lecture #2

Process States extended

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination



T.B. Skaali, Department of Physics, University of Oslo 37FYS4220/9220 - 2011 - Lecture #2

Fork and Join – the general concept

• The fork specifies that a designated routine should start executing 
concurrently with the invoker 

• Join allows the invoker to wait for the completion of the invoked routine 
function F return is ...;
procedure P;

...
C:= fork F;
... 
J:= join C;
...

end P;
• After the fork, P and F will be executing concurrently. At the point of 

the join, P will wait until the F has finished (if it has not already done 
so)

• Fork and join notation can be found in UNIX/POSIX



T.B. Skaali, Department of Physics, University of Oslo 38FYS4220/9220 - 2011 - Lecture #2

The UNIX system call fork() 

• System call fork() is used to create processes. It takes no 
arguments and returns a process ID. The purpose of fork() is to 
create a new process, which becomes the child process of the 
caller. After a new child process is created, both processes will 
execute the next instruction following the fork() system call. 
Therefore, we have to distinguish the parent from the child. This 
can be done by testing the returned value of fork(): 
– If fork() returns a negative value, the creation of a child process 

was unsuccessful. 
– fork() returns a zero to the newly created child process. 
– fork() returns a positive value, the process ID of the child process, 

to the parent 
• UNIX will give an exact copy of the parent’s address space and 

give to the child



T.B. Skaali, Department of Physics, University of Oslo 39FYS4220/9220 - 2011 - Lecture #2

Fork() example I – page 1 of 1

Examples from ”UNIX Multiprocess Programming 
http://www.csl.mtu.edu/cs4411/www/Home.html
http://www.csl.mtu.edu/cs4411/www/NOTES/process/process.html



T.B. Skaali, Department of Physics, University of Oslo 40FYS4220/9220 - 2011 - Lecture #2

Fork() example II – page 1 of 2



T.B. Skaali, Department of Physics, University of Oslo 41FYS4220/9220 - 2011 - Lecture #2

Fork() example II – page 2 of 2



T.B. Skaali, Department of Physics, University of Oslo 42FYS4220/9220 - 2011 - Lecture #2

The POSIX fork() call



T.B. Skaali, Department of Physics, University of Oslo 43FYS4220/9220 - 2011 - Lecture #2

POSIX fork() 
• IEEE Std 1003.1    

http://www.opengroup.org/onlinepubs/000095399/functions/fork.html



T.B. Skaali, Department of Physics, University of Oslo 44FYS4220/9220 - 2011 - Lecture #2

POSIX Threads Programming

• As a starter, let us have a look at the beginning of this tutorial 
from Lawrence Livermore National Laboratory   
https://computing.llnl.gov/tutorials/pthreads
– A PDF version of the tutorial is on the FYS4220 web page

• An exercise with VxWorks pthreads will come later


