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A kickstart: data flow through a basic DAQ system
• The figure shows schematically the data flow in a baseline DAQ 

system with three stages. Keep in mind the signal processing 
chain from Lecture 1. Let us here focus on the communication.
– Data are exchanged via buffers. Each buffer has one producer and 

and in this case one or two consumer process(es)
• The buffer comprises buffer information (address pointers, used 

space, free space, etc) and data
– Synchronization is needed between the stages
– A producer can only store data if there is free buffer space

• What if the buffer is full?
– A consumer can only fetch data if there is something in the buffer

• What to do if the buffer is empty?
• When can an input buffer be released when there are several 

consumers?
Presenter
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Process-process interaction

• Synchronization : no data transferred
• Messages : transfer of data but also a mean of synchronization: 

waiting process can not continue until sender has sent data
• Shared memory : as in tightly coupled systems

– Note however that a shared memory does not necessarily imply 
that it is a local memory, in a cluster topology it may be located 
anywhere. More about this in a later lecture.

• In this lecture we will focus on shared variable based 
communication
– As the name indicates, a ”shared variable” can be accessed from 

several processes. In a ”flat memory” system, i.e. no memory 
protection (vxWorks), any process can access any part of the local 
memory without going through a system call. 

– However, shared variables (semaphores) is only accessed through 
(VxWorks) system calls

– In a memory protected system, shared memory areas can be 
mapped from user space through a system call 

Borrowed some phrases from B&W for the lecture
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Main Interprocess Communication methods (ref. Wikipedia)

• File - Most OS’s

• Signal - Most OS’s, some systems, such as Windows, only implement signals in the C 
run-time library and do not actually provide support for their use as an IPC technique.

• Socket - Most OS’s

• Message queue - Most OS’s

• Pipe / Named Pipe – All POSIX, Windows

• Semaphore – All POSIX, Windows

• Shared memory – All POSIX, Windows

• Message passing - Used in MPI paradigm and others

• Memory-mapped file - All POSIX systems, Windows. This technique may carry 
race condition risk if a temporary file is used

• On a higher level, there are many API’s (Application Programmers 
Interface) and hardware interconnects for implementing IPCs
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Mutual exclusion and critical sections

• The parts of processes that access shared variables must be 
executed indivisibly with respect to each other

• These parts are called critical sections
• The required protection is called mutual exclusion
• So if one uses shared variables for synchronization, how can 

they be accessed from a critical section, because one would 
use the same variables to create a critical section??
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Accessing shared variables can go vyer rwnog !
• /* (un)critical region demo case, B. Skaali, Jan. 2002 */

• #include "vxWorks.h"
• #include "sysLib.h"
• #include "time.h"
• #include "kernelLib.h"
• #include "taskLib.h"
• #include "tickLib.h"
• #include "stdio.h"

• #define LOOPS 50000000
• /* reduce LOOPS for slow MC68030 target */
• #define INC 1
• /* relative priorities */
• #define P_PRI 200
• #define M_PRI 200

• ULONG   tickstart;
• double x;

• /* plusx task */
• int plusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• x = x + INC;
• x = x + INC;
• x = x + INC;
• }
• printf("\n");
• printf("- plusx exit = %ld\n", (long int)x);
• printf("- plusx exit ticks = %ld\n", tickGet()-tickstart); 
• return (OK);
• }
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Accessing shared variables can go vyer rwnog !
• /* minusx task */
• int minusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• x = x - INC;
• x = x - INC;
• x = x - INC;
• }
• printf("\n");
• printf("- minusx exit= %ld\n", (long int)x);
• printf("- minusx exit ticks = %ld\n", tickGet()-tickstart); 
• return (OK);
• }
•
• /* start here to run the demo */
• void plusminus()
• {
• int Pid, Mid;
• /* enable or disable Wind round-robin*/
• kernelTimeSlice (1);
• /* launch the intelligent stuff */
• x = 0;
• tickSet(0);
• tickstart = tickGet();
• Pid = taskSpawn ("tP",P_PRI,0,1000,(FUNCPTR)plusx,0,0,0,0,0,0,0,0,0,0);
• Mid = taskSpawn ("tM",M_PRI,0,1000,(FUNCPTR)minusx,0,0,0,0,0,0,0,0,0,0);
• }

• /* show value */
• void showx()
• {
• printf("current x = %ld\n", (long int)x);
• }
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Accessing shared variables goes rwnog

• Start from the shell
– -> plusminus
– value = 78545560 = 0x4ae8298
– ->

• Output:
– - plusx exit = 46959291
– - plusx exit ticks = 138

– - minusx exit= 46051968
– - minusx exit ticks = 138

• From showx():
– -> showx
– current x = 46051968
– value = 21 = 0x15
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Busy waiting

• One way to implement synchronisation is to have processes set 
and check shared variables that are acting as flags

• This approach can work well for condition synchronisation but 
no simple method for mutual exclusion exists
– However, if more than one process can change the value of the 

flag in a non-atomic action, then one is back to square one! 
• Busy wait algorithms are in general inefficient; they involve 

processes using up processing cycles when they cannot 
perform useful work

• Busy waiting can create a livelock!
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Atomic actions

• An atomic action is a sequence of instructions which are 
executed as an entity

• Changing a condition flag implies that it is incremented or 
decremented

• If this operation is not carried out by a single machine 
(assembly) instruction it is not an atomic action if the sequence 
can be interrupted
– Note however processors have multi-stage atomic instructions 

such as “test-and-set", "fetch-and-add“, "compare-and-swap“, etc 
– Example: http://www.ibm.com/developerworks/library/pa-atom

• So, is synchronization by means of shared variables possible, 
or is it a contradiction in terms?

• It is, but complicated, and the first solution was given by E.W. 
Dijkstra
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The birth of the Semaphore concept

E.W. Dijkstra: 
”Computer Science 
is no more about 
computers than 
astronomy is about 
telescopes”.
Quotation #788 from 
Michael Moncur’s 
(Cynical) Quotations
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Dijkstra’s Semaphores

• A semaphore is a non-negative integer variable that apart from 
initialization can only be acted upon by two procedures P (or 
WAIT) and V (or SIGNAL)

• The canonical names P and V come from the initials of Dutch words. V 
stands for verhogen (“increase”), and P stands for probeer (“try”)

• WAIT(S)     If the value of S > 0 then decrement its value by 
one; otherwise delay the process until S > 0  (and then 
decrement its value).

• SIGNAL(S)   Increment the value of  S by one. If a process is 
waiting for S, dispatch the process

• WAIT and SIGNAL are atomic (indivisible). Two processes both 
executing WAIT operations on the same semaphore cannot 
interfere with each other and cannot fail during the execution of 
a semaphore operation
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Synchronization

process P1; 
statement X;
wait (sem)
statement Y;  

end P1;

process P2; 
statement A;
signal (sem)
statement B;  

end P2; 

(Some language) var sem : semaphore (* init 0 *) 

In what order will the statements execute?
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Mutual exclusion

process P2;
statement A;
wait (mutex);

statement B;
signal (mutex);
statement C;

end P2;

process P1;
statement X
wait (mutex);
statement Y

signal (mutex);
statement Z

end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?
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Problems with semaphores

• Semaphore are an elegant low-level synchronisation primitive, 
however, their use is error-prone

• If a semaphore is omitted or misplaced, the entire program will 
collapse. Mutual exclusion may not be assured and deadlock 
may appear just when the software is dealing with a rare but 
critical event 

• A more structured synchronisation primitive is required
• No high-level concurrent programming language relies entirely 

on semaphores; they are important historically but are arguably 
not adequate for the real-time domain (well, I am not sure that I will fully buy this 
statement …)
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Deadlock (or the deadly embrace)

• Two processes are deadlocked if each is holding a resource 
while waiting for a resource held by the other

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

process P2;
begin

...
Wait(Y);
Wait(X);
...

end P2;

proc P1; 
begin

...
Wait(X);
Wait(Y); 
...

end P1;

Deadlock will 
occur when?
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Binary and quantity semaphores

• A general semaphore is a non-negative integer; its value can 
rise to any supported positive number

• A binary semaphore only takes the value 0 and 1; the signalling 
of a semaphore which has the value 1 has no effect - the 
semaphore retains the value 1

• A general semaphore can be implemented by two binary 
semaphores and an integer. Try it!

• With a quantity semaphore the amount to be decremented by 
WAIT (and incremented by SIGNAL) is given as a parameter; 
e.g. WAIT (S, i) 
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VxWorks Mutual Exclusion I

• While a shared address space simplifies exchange of data, 
interlocking access to memory is crucial to avoid contention. 

• Method 1:
– Interrupt locks with system calls intLock() and intUnLock()

• Very powerful, no interference when interrupt disabled!
• Latency problem, can not respond to interrupt during the lock

funcA () 
{ 
int lock = intLock();
. 
. critical region that cannot be interrupted
. 
intUnlock (lock);

}  
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VxWorks Mutual Exclusion II

• Method 2:
– Preemptive lock with taskLock() and taskUnLock

• Disabling preemption is somewhat less restrictive
• Interrupt service routines (ISR) can continue to execute
• However, tasks of higher priority can not execute

funcA () 
{ 
taskLock ();
. 
. critical region that cannot be interrupted
. 
taskUnlock ();

}  
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VxWorks Mutual Exclusion III

• Method 3 – Semaphores
– For mutual exclusion, semaphores interlock access to shared 

resources
– For synchronization, semaphores coordinate a task's execution 

with external events
– Wind semaphores:

• binary - the fastest, most general-purpose semaphore. Optimized for 
synchronization or mutual exclusion

• mutual exclusion - a special binary semaphore optimized for 
problems inherent in mutual exclusion: priority inheritance, deletion 
safety, and recursion

• counting - like the binary semaphore, but keeps track of the number 
of times a semaphore is given. Optimized for guarding multiple 
instances of a resource

– Vxworks also provides POSIX semaphores     
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VxWorks ”Wind” semaphore library

• semBCreate( ) Allocate and initialize a binary semaphore.
• semMCreate( ) Allocate and initialize a mutual-exclusion semaphore.
• semCCreate( ) Allocate and initialize a counting semaphore.
• semDelete( ) Terminate and free a semaphore.
• semTake( ) Take a semaphore.
• semGive( ) Give a semaphore.
• semFlush( ) Unblock all tasks that are waiting for a semaphore.
• The semBCreate( ), semMCreate( ), and semCCreate( ) routines 

return a semaphore ID that serves as a handle on the semaphore 
during subsequent use by the other semaphore-control routines. When 
a semaphore is created, the queue type is specified. Tasks pending on 
a semaphore can be queued in priority order (SEM_Q_PRIORITY) or 
in first-in first-out order (SEM_Q_FIFO).
– WARNING: The semDelete( ) call terminates a semaphore and 

deallocates any associated memory. Take care when deleting 
semaphores, particularly those used for mutual exclusion, to avoid 
deleting a semaphore that another task still requires. Do not delete 
a semaphore unless the same task first succeeds in taking it. 
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Accessing shared variables goes OK
• /* binary semaphore critical region demo , B. Skaali, Sep. 2007 */

• #include "vxWorks.h"
• #include "sysLib.h"
• #include "time.h"
• #include "kernelLib.h"
• #include "taskLib.h"
• #include "tickLib.h"
• #include "stdio.h"

• #define LOOPS 500000
• /* reduce LOOPS for slow MC68030 target */
• #define INC 1
• /* relative priorities */
• #define P_PRI 200
• #define M_PRI 200

• /* mutex */
• SEM_ID semMutex;

• ULONG   tickstart;
• double x;
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Accessing shared variables goes OK
• /* plusx */
• int plusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• semTake (semMutex, WAIT_FOREVER); 
• x = x + INC;
• x = x + INC;
• x = x + INC;
• semGive (semMutex);
• }
• printf("\n");
• printf("- plusx exit = %ld\n", (long int)x);
• printf("- plusx exit ticks = %ld\n", tickGet()-tickstart);
• return (OK);
• }
•
• /* minusx */
• int minusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• semTake (semMutex, WAIT_FOREVER); 
• x = x - INC;
• x = x - INC;
• x = x - INC;
• semGive (semMutex);
• }
• printf("\n");
• printf("- minusx exit= %ld\n", (long int)x);
• printf("- minusx exit ticks = %ld\n", tickGet()-tickstart); 
• return (OK);
• }
•
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Accessing shared variables goes OK
• /* run the demo */
• STATUS plusminus()
• {
• int Pid, Mid;

• /* enable or disable Wind round-robin*/
• kernelTimeSlice (1);

• /* Create a binary semaphore that is initially full. Tasks * 
• * blocked on semaphore wait in priority order.            */ 
• semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);
• if (semMutex == NULL) return(-1);

• /* launch the intelligent stuff */
• x = 0;
• tickSet(0);
• tickstart = tickGet();
• Pid = taskSpawn ("tP",P_PRI,0,1000,(FUNCPTR)plusx,0,0,0,0,0,0,0,0,0,0);
• Mid = taskSpawn ("tM",M_PRI,0,1000,(FUNCPTR)minusx,0,0,0,0,0,0,0,0,0,0);
• return (OK);
• }
• /* what is the status of semMutex after plusx and minusx have run? *
• * use shell command semShow(semMutex,1) */
•
• /* show value */
• void showx()
• {
• printf("current x = %ld\n", (long int)x);
• }
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Accessing shared variables goes OK

• -> plusminus
• value = 0 = 0x0

• -> showx
• current x = 0
• value = 14 = 0xe

• -> semShow(semMutex,1)
• Semaphore Id        : 0x4b2dce0   
• Semapho re Type  : BINARY    
• Task Queueing       : PRIORITY  
• Pended Tasks        : 0         
• State                       : FULL 

• - plusx exit = 1500000
• - plusx exit ticks = 67

• - minusx exit= 0
• - minusx exit ticks = 129
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Without mutual 
exclusion or interaction 
between plusx() and 
minusx(). 

After tP and tM have 
been dispatched from 
process interactive 
process t7 through 
tExcTask they execute 
on a round-robin basis 
with time slice 16.67ms, 
which is the period of 
the Real-Time clock



T.B. Skaali, Department of Physics, University of Oslo 27FYS4220/9220 - 2011 - Lecture #3

With mutual exclusion 
between plusx() and 
minusx(). Semaphore 
operations are shown by 
flags.
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With mutual 
exclusion between 
plusx() and minusx(). 
Semaphore 
operations are shown 
by flags. Note that 
timeslice is now 
~500s!

semGive

semTake
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VxWorks POSIX semaphores

• POSIX defines both named and unnamed semaphores, which 
have the same properties, but use slightly different interfaces. 
The POSIX semaphore library provides routines for creating, 
opening, and destroying both named and unnamed 
semaphores

• The POSIX terms wait (or lock) and post (or unlock) correspond 
to the VxWorks terms take and give, respectively 

• POSIX semaphores are counting semaphores; that is, they 
keep track of the number of times they are given

• The Wind semaphore mechanism is similar to that specified by 
POSIX, except that Wind semaphores offer additional features: 
priority inheritance, task-deletion safety, the ability for a single 
task to take a semaphore multiple times, ownership of mutual-
exclusion semaphores, semaphore timeouts, and the choice of 
queuing mechanism. When these features are important, Wind 
semaphores are preferable. 
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VxWorks POSIX semaphore library

• semPxLibInit( ) Initialize the POSIX semaphore library (non-POSIX).
• sem_init( ) Initialize an unnamed semaphore.
• sem_destroy( ) Destroy an unnamed semaphore.
• sem_open( ) Initialize/open a named semaphore.
• sem_close( ) Close a named semaphore.
• sem_unlink( ) Remove a named semaphore.
• sem_wait( ) Lock a semaphore.
• sem_trywait( ) Lock a semaphore only if it is not already locked.
• sem_post( ) Unlock a semaphore.
• sem_getvalue( ) Get the value of a semaphore.
• WARNING: The sem_destroy( ) call terminates an unnamed semaphore and 

deallocates any associated memory; the combination of sem_close( ) and 
sem_unlink( ) has the same effect for named semaphores. Take care when 
deleting semaphores, particularly mutual exclusion semaphores, to avoid 
deleting a semaphore still required by another task. Do not delete a semaphore 
unless the deleting task first succeeds in locking that semaphore. (Likewise, for 
named semaphores, close semaphores only from the same task that opens 
them.) 
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POSIX mutexes I

• The POSIX thread library contains several synchronization 
constructs. 

• The simplest of these is the mutex lock. 
• A mutex, or mutex lock, is a special variable that can be either 

in the locked state or the unlocked state. 
• If the mutex is locked, it has a distinguished thread that holds or 

own the mutex. 
• If the mutex is unlocked, we say that the mutex is free or 

available. 
• The mutex also has a queue of threads that are waiting to hold 

the mutex. 
• POSIX does not require that this queue be accessed FIFO. 
• A mutex is meant to be held for only a short period of time. 
• More about POSIX mutexes and condition variables in a later 

lecture
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The Barrier synchonization concept
• In parallell computing, a barrier is a type of synchronization 

method. A barrier for a group of threads or processes in the 
source code means any thread/process must stop at this point 
and cannot proceed until all other threads/processes reach this 
barrier.

– A barrier can be implemented by means of Wind semaphores. When all 
process have reached the barrier and are waiting for the semaphore, 
semFlush( ) will unblock all tasks that are waiting.

– What about operations on the common variable barrierCounter !!?? 
/* Use a barrier for thread synchronization */

semTake(barrierMutex, WAIT_FOREVER);

if (++barrierCounter == 3)
{

/* All threads have reached waypoint - Continue */
semFlush(barrierWait);
barrierCounter = 0;
semGive(barrierMutex);

}
else

{
/* Wait for other threads */
semGive(barrierMutex);

semTake(barrierWait, WAIT_FOREVER);
}
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Condition Variables, Joining
• Condition Variables are a second kind of synchronization primitive (Mutexes being the 

first). They are useful when you have a thread that needs to wait for a certain condition 
to be true. In pthreads, there are three relevant procedures involving condition 
variables: 

– pthread_cond_init(pthread_cond_t *cv);
– pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *lock);
– pthread_cond_signal(pthread_cond_t *cv)

• The first of these simply initializes a condition variable. The second two are related. 
Pthread_cond_wait() is called by a thread when it wants to block and wait for a 
condition to be true. It is assumed that the thread has locked the mutex indicated by the 
second parameter. The thread releases the mutex, and blocks until awakened by a 
pthread_cond_signal() call from another thread. When it is awakened, it waits until it 
can acquire the mutex, and once acquired, it returns from the pthread_cond_wait() call. 

• Pthread_cond_signal() checks to see if there are any threads waiting on the specified 
condition variable. If not, then it simply returns. If there are threads waiting, then one is 
awakened. It is not specified whether the thread that calls pthread_cond_signal()
should own the locked mutex specified by the pthread_cond_wait() call of the thread 
that it is waking up.

• Note, you should not assume anything about the order in which threads are awakened 
by pthread_cond_signal() calls. It is natural to assume that they will be awakened in 
the order in which they waited, but that may not be the case. Program accordingly. 
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Ref. Jim Plank, Lecture notes:  http://www.cs.utk.edu/~plank/plank/classes/cs360/360/notes/CondVar/lecture.html 
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Condition Variables, Joining
• A simple example of using condition variables is in the program barrier.c. Here, we 

have 5 threads, and we want to make sure that they all synchronize at a particular 
point. Often this is called a ``barrier'', since all the threads stop at this barrier before 
proceeding. In barrier.c the number of threads waiting is held in the variable 
ndone, and if a thread reaches the barrier before ndone equals NTHREADS, it 
waits on the condition variable ts->cv. When the last thread reaches the barrier, it 
wakes all the others up using pthread_cond_signal. The output of barrier.c
shows that they all block until the last thread reaches the barrier: 

– The barrier.c source is shown on next page
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Ref. Jim Plank, Lecture notes:  http://www.cs.utk.edu/~plank/plank/classes/cs360/360/notes/CondVar/lecture.html 

barrier
Thread 0 -- waiting for barrier 
Thread 1 -- waiting for barrier 
Thread 2 -- waiting for barrier 
Thread 3 -- waiting for barrier 
Thread 4 -- waiting for barrier 
Thread 4 -- after barrier 
Thread 0 -- after barrier 
Thread 1 -- after barrier 
Thread 2 -- after barrier 
Thread 3 -- after barrier 
done
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#include "vxWorks.h"
#include "taskLib.h"
#include "sysLib.h"
#include "mqueue.h" 
#include "fcntl.h"
#include "errno.h"
#include "time.h"
#include "tickLib.h"
#include "stdio.h"
#include "stdlib.h"
#include "pthread.h"
#include "logLib.h"

typedef struct {
pthread_mutex_t *lock;
pthread_cond_t *cv;
int *ndone;
int id;

} TStruct;

#define NTHREADS 5

void *barrier(void *arg)
{

TStruct *ts;
int i;
ts = (TStruct *) arg;
printf("Thread %d -- waiting for barrier\n", ts->id);
pthread_mutex_lock(ts->lock);
*ts->ndone = *ts->ndone + 1;
if (*ts->ndone < NTHREADS) {

pthread_cond_wait(ts->cv, ts->lock);
} else {

for (i = 1; i < NTHREADS; i++) pthread_cond_signal(ts-
>cv);

}
pthread_mutex_unlock(ts->lock);

printf("Thread %d -- after barrier\n", ts->id);
}

main()
{

TStruct ts[NTHREADS];
pthread_t tids[NTHREADS];
int i, ndone;
pthread_mutex_t lock;
pthread_cond_t cv;
void *retval;

pthread_mutex_init(&lock, NULL);
pthread_cond_init(&cv, NULL);
ndone = 0;

for (i = 0; i < NTHREADS; i++) {
ts[i].lock = &lock;
ts[i].cv = &cv;
ts[i].ndone = &ndone;
ts[i].id = i;

}

for (i = 0; i < NTHREADS; i++) {
pthread_create(tids+i, NULL, barrier, ts+i);

}

for (i = 0; i < NTHREADS; i++) {
pthread_join(tids[i], &retval);

}
printf("done\n");

}


