
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 – 2011 / #3

Real Time and Embedded Data Systems and Computing

Process-Process Synchronization and
Communication based on Shared Variables

Revision 12.9 2011: added «Condition Variable» synchronization primitive

T.B. Skaali, Department of Physics, University of Oslo 2FYS4220/9220 - 2011 - Lecture #3

A kickstart: data flow through a basic DAQ system
• The figure shows schematically the data flow in a baseline DAQ

system with three stages. Keep in mind the signal processing
chain from Lecture 1. Let us here focus on the communication.
– Data are exchanged via buffers. Each buffer has one producer and

and in this case one or two consumer process(es)
• The buffer comprises buffer information (address pointers, used

space, free space, etc) and data
– Synchronization is needed between the stages
– A producer can only store data if there is free buffer space

• What if the buffer is full?
– A consumer can only fetch data if there is something in the buffer

• What to do if the buffer is empty?
• When can an input buffer be released when there are several

consumers?
Presenter

Storage

Data readout Processing BuffersBuffers

Sensors

T.B. Skaali, Department of Physics, University of Oslo 3FYS4220/9220 - 2011 - Lecture #3

Process-process interaction

• Synchronization : no data transferred
• Messages : transfer of data but also a mean of synchronization:

waiting process can not continue until sender has sent data
• Shared memory : as in tightly coupled systems

– Note however that a shared memory does not necessarily imply
that it is a local memory, in a cluster topology it may be located
anywhere. More about this in a later lecture.

• In this lecture we will focus on shared variable based
communication
– As the name indicates, a ”shared variable” can be accessed from

several processes. In a ”flat memory” system, i.e. no memory
protection (vxWorks), any process can access any part of the local
memory without going through a system call.

– However, shared variables (semaphores) is only accessed through
(VxWorks) system calls

– In a memory protected system, shared memory areas can be
mapped from user space through a system call

Borrowed some phrases from B&W for the lecture

T.B. Skaali, Department of Physics, University of Oslo

Main Interprocess Communication methods (ref. Wikipedia)

• File - Most OS’s

• Signal - Most OS’s, some systems, such as Windows, only implement signals in the C
run-time library and do not actually provide support for their use as an IPC technique.

• Socket - Most OS’s

• Message queue - Most OS’s

• Pipe / Named Pipe – All POSIX, Windows

• Semaphore – All POSIX, Windows

• Shared memory – All POSIX, Windows

• Message passing - Used in MPI paradigm and others

• Memory-mapped file - All POSIX systems, Windows. This technique may carry
race condition risk if a temporary file is used

• On a higher level, there are many API’s (Application Programmers
Interface) and hardware interconnects for implementing IPCs

4FYS4220/9220 - 2011 - Lecture #3

T.B. Skaali, Department of Physics, University of Oslo 5FYS4220/9220 - 2011 - Lecture #3

Mutual exclusion and critical sections

• The parts of processes that access shared variables must be
executed indivisibly with respect to each other

• These parts are called critical sections
• The required protection is called mutual exclusion
• So if one uses shared variables for synchronization, how can

they be accessed from a critical section, because one would
use the same variables to create a critical section??

T.B. Skaali, Department of Physics, University of Oslo 6FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables can go vyer rwnog !
• /* (un)critical region demo case, B. Skaali, Jan. 2002 */

• #include "vxWorks.h"
• #include "sysLib.h"
• #include "time.h"
• #include "kernelLib.h"
• #include "taskLib.h"
• #include "tickLib.h"
• #include "stdio.h"

• #define LOOPS 50000000
• /* reduce LOOPS for slow MC68030 target */
• #define INC 1
• /* relative priorities */
• #define P_PRI 200
• #define M_PRI 200

• ULONG tickstart;
• double x;

• /* plusx task */
• int plusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• x = x + INC;
• x = x + INC;
• x = x + INC;
• }
• printf("\n");
• printf("- plusx exit = %ld\n", (long int)x);
• printf("- plusx exit ticks = %ld\n", tickGet()-tickstart);
• return (OK);
• }

T.B. Skaali, Department of Physics, University of Oslo 7FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables can go vyer rwnog !
• /* minusx task */
• int minusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• x = x - INC;
• x = x - INC;
• x = x - INC;
• }
• printf("\n");
• printf("- minusx exit= %ld\n", (long int)x);
• printf("- minusx exit ticks = %ld\n", tickGet()-tickstart);
• return (OK);
• }
•
• /* start here to run the demo */
• void plusminus()
• {
• int Pid, Mid;
• /* enable or disable Wind round-robin*/
• kernelTimeSlice (1);
• /* launch the intelligent stuff */
• x = 0;
• tickSet(0);
• tickstart = tickGet();
• Pid = taskSpawn ("tP",P_PRI,0,1000,(FUNCPTR)plusx,0,0,0,0,0,0,0,0,0,0);
• Mid = taskSpawn ("tM",M_PRI,0,1000,(FUNCPTR)minusx,0,0,0,0,0,0,0,0,0,0);
• }

• /* show value */
• void showx()
• {
• printf("current x = %ld\n", (long int)x);
• }

T.B. Skaali, Department of Physics, University of Oslo 8FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables goes rwnog

• Start from the shell
– -> plusminus
– value = 78545560 = 0x4ae8298
– ->

• Output:
– - plusx exit = 46959291
– - plusx exit ticks = 138

– - minusx exit= 46051968
– - minusx exit ticks = 138

• From showx():
– -> showx
– current x = 46051968
– value = 21 = 0x15

T.B. Skaali, Department of Physics, University of Oslo 9FYS4220/9220 - 2011 - Lecture #3

Busy waiting

• One way to implement synchronisation is to have processes set
and check shared variables that are acting as flags

• This approach can work well for condition synchronisation but
no simple method for mutual exclusion exists
– However, if more than one process can change the value of the

flag in a non-atomic action, then one is back to square one!
• Busy wait algorithms are in general inefficient; they involve

processes using up processing cycles when they cannot
perform useful work

• Busy waiting can create a livelock!

T.B. Skaali, Department of Physics, University of Oslo 10FYS4220/9220 - 2011 - Lecture #3

Atomic actions

• An atomic action is a sequence of instructions which are
executed as an entity

• Changing a condition flag implies that it is incremented or
decremented

• If this operation is not carried out by a single machine
(assembly) instruction it is not an atomic action if the sequence
can be interrupted
– Note however processors have multi-stage atomic instructions

such as “test-and-set", "fetch-and-add“, "compare-and-swap“, etc
– Example: http://www.ibm.com/developerworks/library/pa-atom

• So, is synchronization by means of shared variables possible,
or is it a contradiction in terms?

• It is, but complicated, and the first solution was given by E.W.
Dijkstra

T.B. Skaali, Department of Physics, University of Oslo 11FYS4220/9220 - 2011 - Lecture #3

The birth of the Semaphore concept

E.W. Dijkstra:
”Computer Science
is no more about
computers than
astronomy is about
telescopes”.
Quotation #788 from
Michael Moncur’s
(Cynical) Quotations

T.B. Skaali, Department of Physics, University of Oslo 12FYS4220/9220 - 2011 - Lecture #3

Dijkstra’s Semaphores

• A semaphore is a non-negative integer variable that apart from
initialization can only be acted upon by two procedures P (or
WAIT) and V (or SIGNAL)

• The canonical names P and V come from the initials of Dutch words. V
stands for verhogen (“increase”), and P stands for probeer (“try”)

• WAIT(S) If the value of S > 0 then decrement its value by
one; otherwise delay the process until S > 0 (and then
decrement its value).

• SIGNAL(S) Increment the value of S by one. If a process is
waiting for S, dispatch the process

• WAIT and SIGNAL are atomic (indivisible). Two processes both
executing WAIT operations on the same semaphore cannot
interfere with each other and cannot fail during the execution of
a semaphore operation

T.B. Skaali, Department of Physics, University of Oslo 13FYS4220/9220 - 2011 - Lecture #3

Synchronization

process P1;
statement X;
wait (sem)
statement Y;

end P1;

process P2;
statement A;
signal (sem)
statement B;

end P2;

(Some language) var sem : semaphore (* init 0 *)

In what order will the statements execute?

T.B. Skaali, Department of Physics, University of Oslo 14FYS4220/9220 - 2011 - Lecture #3

Mutual exclusion

process P2;
statement A;
wait (mutex);

statement B;
signal (mutex);
statement C;

end P2;

process P1;
statement X
wait (mutex);
statement Y

signal (mutex);
statement Z

end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?

T.B. Skaali, Department of Physics, University of Oslo 15FYS4220/9220 - 2011 - Lecture #3

Problems with semaphores

• Semaphore are an elegant low-level synchronisation primitive,
however, their use is error-prone

• If a semaphore is omitted or misplaced, the entire program will
collapse. Mutual exclusion may not be assured and deadlock
may appear just when the software is dealing with a rare but
critical event

• A more structured synchronisation primitive is required
• No high-level concurrent programming language relies entirely

on semaphores; they are important historically but are arguably
not adequate for the real-time domain (well, I am not sure that I will fully buy this
statement …)

T.B. Skaali, Department of Physics, University of Oslo 16FYS4220/9220 - 2011 - Lecture #3

Deadlock (or the deadly embrace)

• Two processes are deadlocked if each is holding a resource
while waiting for a resource held by the other

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

process P2;
begin

...
Wait(Y);
Wait(X);
...

end P2;

proc P1;
begin

...
Wait(X);
Wait(Y);
...

end P1;

Deadlock will
occur when?

T.B. Skaali, Department of Physics, University of Oslo 17FYS4220/9220 - 2011 - Lecture #3

Binary and quantity semaphores

• A general semaphore is a non-negative integer; its value can
rise to any supported positive number

• A binary semaphore only takes the value 0 and 1; the signalling
of a semaphore which has the value 1 has no effect - the
semaphore retains the value 1

• A general semaphore can be implemented by two binary
semaphores and an integer. Try it!

• With a quantity semaphore the amount to be decremented by
WAIT (and incremented by SIGNAL) is given as a parameter;
e.g. WAIT (S, i)

T.B. Skaali, Department of Physics, University of Oslo 18FYS4220/9220 - 2011 - Lecture #3

VxWorks Mutual Exclusion I

• While a shared address space simplifies exchange of data,
interlocking access to memory is crucial to avoid contention.

• Method 1:
– Interrupt locks with system calls intLock() and intUnLock()

• Very powerful, no interference when interrupt disabled!
• Latency problem, can not respond to interrupt during the lock

funcA ()
{
int lock = intLock();
.
. critical region that cannot be interrupted
.
intUnlock (lock);

}

T.B. Skaali, Department of Physics, University of Oslo 19FYS4220/9220 - 2011 - Lecture #3

VxWorks Mutual Exclusion II

• Method 2:
– Preemptive lock with taskLock() and taskUnLock

• Disabling preemption is somewhat less restrictive
• Interrupt service routines (ISR) can continue to execute
• However, tasks of higher priority can not execute

funcA ()
{
taskLock ();
.
. critical region that cannot be interrupted
.
taskUnlock ();

}

T.B. Skaali, Department of Physics, University of Oslo 20FYS4220/9220 - 2011 - Lecture #3

VxWorks Mutual Exclusion III

• Method 3 – Semaphores
– For mutual exclusion, semaphores interlock access to shared

resources
– For synchronization, semaphores coordinate a task's execution

with external events
– Wind semaphores:

• binary - the fastest, most general-purpose semaphore. Optimized for
synchronization or mutual exclusion

• mutual exclusion - a special binary semaphore optimized for
problems inherent in mutual exclusion: priority inheritance, deletion
safety, and recursion

• counting - like the binary semaphore, but keeps track of the number
of times a semaphore is given. Optimized for guarding multiple
instances of a resource

– Vxworks also provides POSIX semaphores

T.B. Skaali, Department of Physics, University of Oslo 21FYS4220/9220 - 2011 - Lecture #3

VxWorks ”Wind” semaphore library

• semBCreate() Allocate and initialize a binary semaphore.
• semMCreate() Allocate and initialize a mutual-exclusion semaphore.
• semCCreate() Allocate and initialize a counting semaphore.
• semDelete() Terminate and free a semaphore.
• semTake() Take a semaphore.
• semGive() Give a semaphore.
• semFlush() Unblock all tasks that are waiting for a semaphore.
• The semBCreate(), semMCreate(), and semCCreate() routines

return a semaphore ID that serves as a handle on the semaphore
during subsequent use by the other semaphore-control routines. When
a semaphore is created, the queue type is specified. Tasks pending on
a semaphore can be queued in priority order (SEM_Q_PRIORITY) or
in first-in first-out order (SEM_Q_FIFO).
– WARNING: The semDelete() call terminates a semaphore and

deallocates any associated memory. Take care when deleting
semaphores, particularly those used for mutual exclusion, to avoid
deleting a semaphore that another task still requires. Do not delete
a semaphore unless the same task first succeeds in taking it.

T.B. Skaali, Department of Physics, University of Oslo 22FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables goes OK
• /* binary semaphore critical region demo , B. Skaali, Sep. 2007 */

• #include "vxWorks.h"
• #include "sysLib.h"
• #include "time.h"
• #include "kernelLib.h"
• #include "taskLib.h"
• #include "tickLib.h"
• #include "stdio.h"

• #define LOOPS 500000
• /* reduce LOOPS for slow MC68030 target */
• #define INC 1
• /* relative priorities */
• #define P_PRI 200
• #define M_PRI 200

• /* mutex */
• SEM_ID semMutex;

• ULONG tickstart;
• double x;

T.B. Skaali, Department of Physics, University of Oslo 23FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables goes OK
• /* plusx */
• int plusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• semTake (semMutex, WAIT_FOREVER);
• x = x + INC;
• x = x + INC;
• x = x + INC;
• semGive (semMutex);
• }
• printf("\n");
• printf("- plusx exit = %ld\n", (long int)x);
• printf("- plusx exit ticks = %ld\n", tickGet()-tickstart);
• return (OK);
• }
•
• /* minusx */
• int minusx()
• {
• double i;
• for (i=0; i<LOOPS; i++) {
• semTake (semMutex, WAIT_FOREVER);
• x = x - INC;
• x = x - INC;
• x = x - INC;
• semGive (semMutex);
• }
• printf("\n");
• printf("- minusx exit= %ld\n", (long int)x);
• printf("- minusx exit ticks = %ld\n", tickGet()-tickstart);
• return (OK);
• }
•

T.B. Skaali, Department of Physics, University of Oslo 24FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables goes OK
• /* run the demo */
• STATUS plusminus()
• {
• int Pid, Mid;

• /* enable or disable Wind round-robin*/
• kernelTimeSlice (1);

• /* Create a binary semaphore that is initially full. Tasks *
• * blocked on semaphore wait in priority order. */
• semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);
• if (semMutex == NULL) return(-1);

• /* launch the intelligent stuff */
• x = 0;
• tickSet(0);
• tickstart = tickGet();
• Pid = taskSpawn ("tP",P_PRI,0,1000,(FUNCPTR)plusx,0,0,0,0,0,0,0,0,0,0);
• Mid = taskSpawn ("tM",M_PRI,0,1000,(FUNCPTR)minusx,0,0,0,0,0,0,0,0,0,0);
• return (OK);
• }
• /* what is the status of semMutex after plusx and minusx have run? *
• * use shell command semShow(semMutex,1) */
•
• /* show value */
• void showx()
• {
• printf("current x = %ld\n", (long int)x);
• }

T.B. Skaali, Department of Physics, University of Oslo 25FYS4220/9220 - 2011 - Lecture #3

Accessing shared variables goes OK

• -> plusminus
• value = 0 = 0x0

• -> showx
• current x = 0
• value = 14 = 0xe

• -> semShow(semMutex,1)
• Semaphore Id : 0x4b2dce0
• Semapho re Type : BINARY
• Task Queueing : PRIORITY
• Pended Tasks : 0
• State : FULL

• - plusx exit = 1500000
• - plusx exit ticks = 67

• - minusx exit= 0
• - minusx exit ticks = 129

T.B. Skaali, Department of Physics, University of Oslo 26FYS4220/9220 - 2011 - Lecture #3

Without mutual
exclusion or interaction
between plusx() and
minusx().

After tP and tM have
been dispatched from
process interactive
process t7 through
tExcTask they execute
on a round-robin basis
with time slice 16.67ms,
which is the period of
the Real-Time clock

T.B. Skaali, Department of Physics, University of Oslo 27FYS4220/9220 - 2011 - Lecture #3

With mutual exclusion
between plusx() and
minusx(). Semaphore
operations are shown by
flags.

T.B. Skaali, Department of Physics, University of Oslo 28FYS4220/9220 - 2011 - Lecture #3

With mutual
exclusion between
plusx() and minusx().
Semaphore
operations are shown
by flags. Note that
timeslice is now
~500s!

semGive

semTake

T.B. Skaali, Department of Physics, University of Oslo 29FYS4220/9220 - 2011 - Lecture #3

VxWorks POSIX semaphores

• POSIX defines both named and unnamed semaphores, which
have the same properties, but use slightly different interfaces.
The POSIX semaphore library provides routines for creating,
opening, and destroying both named and unnamed
semaphores

• The POSIX terms wait (or lock) and post (or unlock) correspond
to the VxWorks terms take and give, respectively

• POSIX semaphores are counting semaphores; that is, they
keep track of the number of times they are given

• The Wind semaphore mechanism is similar to that specified by
POSIX, except that Wind semaphores offer additional features:
priority inheritance, task-deletion safety, the ability for a single
task to take a semaphore multiple times, ownership of mutual-
exclusion semaphores, semaphore timeouts, and the choice of
queuing mechanism. When these features are important, Wind
semaphores are preferable.

T.B. Skaali, Department of Physics, University of Oslo 30FYS4220/9220 - 2011 - Lecture #3

VxWorks POSIX semaphore library

• semPxLibInit() Initialize the POSIX semaphore library (non-POSIX).
• sem_init() Initialize an unnamed semaphore.
• sem_destroy() Destroy an unnamed semaphore.
• sem_open() Initialize/open a named semaphore.
• sem_close() Close a named semaphore.
• sem_unlink() Remove a named semaphore.
• sem_wait() Lock a semaphore.
• sem_trywait() Lock a semaphore only if it is not already locked.
• sem_post() Unlock a semaphore.
• sem_getvalue() Get the value of a semaphore.
• WARNING: The sem_destroy() call terminates an unnamed semaphore and

deallocates any associated memory; the combination of sem_close() and
sem_unlink() has the same effect for named semaphores. Take care when
deleting semaphores, particularly mutual exclusion semaphores, to avoid
deleting a semaphore still required by another task. Do not delete a semaphore
unless the deleting task first succeeds in locking that semaphore. (Likewise, for
named semaphores, close semaphores only from the same task that opens
them.)

T.B. Skaali, Department of Physics, University of Oslo 31FYS4220/9220 - 2011 - Lecture #3

POSIX mutexes I

• The POSIX thread library contains several synchronization
constructs.

• The simplest of these is the mutex lock.
• A mutex, or mutex lock, is a special variable that can be either

in the locked state or the unlocked state.
• If the mutex is locked, it has a distinguished thread that holds or

own the mutex.
• If the mutex is unlocked, we say that the mutex is free or

available.
• The mutex also has a queue of threads that are waiting to hold

the mutex.
• POSIX does not require that this queue be accessed FIFO.
• A mutex is meant to be held for only a short period of time.
• More about POSIX mutexes and condition variables in a later

lecture

T.B. Skaali, Department of Physics, University of Oslo

The Barrier synchonization concept
• In parallell computing, a barrier is a type of synchronization

method. A barrier for a group of threads or processes in the
source code means any thread/process must stop at this point
and cannot proceed until all other threads/processes reach this
barrier.

– A barrier can be implemented by means of Wind semaphores. When all
process have reached the barrier and are waiting for the semaphore,
semFlush() will unblock all tasks that are waiting.

– What about operations on the common variable barrierCounter !!??
/* Use a barrier for thread synchronization */

semTake(barrierMutex, WAIT_FOREVER);

if (++barrierCounter == 3)
{

/* All threads have reached waypoint - Continue */
semFlush(barrierWait);
barrierCounter = 0;
semGive(barrierMutex);

}
else

{
/* Wait for other threads */
semGive(barrierMutex);

semTake(barrierWait, WAIT_FOREVER);
}

32FYS4220/9220 - 2011 - Lecture #3

T.B. Skaali, Department of Physics, University of Oslo

Condition Variables, Joining
• Condition Variables are a second kind of synchronization primitive (Mutexes being the

first). They are useful when you have a thread that needs to wait for a certain condition
to be true. In pthreads, there are three relevant procedures involving condition
variables:

– pthread_cond_init(pthread_cond_t *cv);
– pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *lock);
– pthread_cond_signal(pthread_cond_t *cv)

• The first of these simply initializes a condition variable. The second two are related.
Pthread_cond_wait() is called by a thread when it wants to block and wait for a
condition to be true. It is assumed that the thread has locked the mutex indicated by the
second parameter. The thread releases the mutex, and blocks until awakened by a
pthread_cond_signal() call from another thread. When it is awakened, it waits until it
can acquire the mutex, and once acquired, it returns from the pthread_cond_wait() call.

• Pthread_cond_signal() checks to see if there are any threads waiting on the specified
condition variable. If not, then it simply returns. If there are threads waiting, then one is
awakened. It is not specified whether the thread that calls pthread_cond_signal()
should own the locked mutex specified by the pthread_cond_wait() call of the thread
that it is waking up.

• Note, you should not assume anything about the order in which threads are awakened
by pthread_cond_signal() calls. It is natural to assume that they will be awakened in
the order in which they waited, but that may not be the case. Program accordingly.

33FYS4220/9220 - 2011 - Lecture #3

Ref. Jim Plank, Lecture notes: http://www.cs.utk.edu/~plank/plank/classes/cs360/360/notes/CondVar/lecture.html

T.B. Skaali, Department of Physics, University of Oslo

Condition Variables, Joining
• A simple example of using condition variables is in the program barrier.c. Here, we

have 5 threads, and we want to make sure that they all synchronize at a particular
point. Often this is called a ``barrier'', since all the threads stop at this barrier before
proceeding. In barrier.c the number of threads waiting is held in the variable
ndone, and if a thread reaches the barrier before ndone equals NTHREADS, it
waits on the condition variable ts->cv. When the last thread reaches the barrier, it
wakes all the others up using pthread_cond_signal. The output of barrier.c
shows that they all block until the last thread reaches the barrier:

– The barrier.c source is shown on next page

34FYS4220/9220 - 2011 - Lecture #3

Ref. Jim Plank, Lecture notes: http://www.cs.utk.edu/~plank/plank/classes/cs360/360/notes/CondVar/lecture.html

barrier
Thread 0 -- waiting for barrier
Thread 1 -- waiting for barrier
Thread 2 -- waiting for barrier
Thread 3 -- waiting for barrier
Thread 4 -- waiting for barrier
Thread 4 -- after barrier
Thread 0 -- after barrier
Thread 1 -- after barrier
Thread 2 -- after barrier
Thread 3 -- after barrier
done

T.B. Skaali, Department of Physics, University of Oslo 35FYS4220/9220 - 2011 - Lecture #3

#include "vxWorks.h"
#include "taskLib.h"
#include "sysLib.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "time.h"
#include "tickLib.h"
#include "stdio.h"
#include "stdlib.h"
#include "pthread.h"
#include "logLib.h"

typedef struct {
pthread_mutex_t *lock;
pthread_cond_t *cv;
int *ndone;
int id;

} TStruct;

#define NTHREADS 5

void *barrier(void *arg)
{

TStruct *ts;
int i;
ts = (TStruct *) arg;
printf("Thread %d -- waiting for barrier\n", ts->id);
pthread_mutex_lock(ts->lock);
*ts->ndone = *ts->ndone + 1;
if (*ts->ndone < NTHREADS) {

pthread_cond_wait(ts->cv, ts->lock);
} else {

for (i = 1; i < NTHREADS; i++) pthread_cond_signal(ts-
>cv);

}
pthread_mutex_unlock(ts->lock);

printf("Thread %d -- after barrier\n", ts->id);
}

main()
{

TStruct ts[NTHREADS];
pthread_t tids[NTHREADS];
int i, ndone;
pthread_mutex_t lock;
pthread_cond_t cv;
void *retval;

pthread_mutex_init(&lock, NULL);
pthread_cond_init(&cv, NULL);
ndone = 0;

for (i = 0; i < NTHREADS; i++) {
ts[i].lock = &lock;
ts[i].cv = &cv;
ts[i].ndone = &ndone;
ts[i].id = i;

}

for (i = 0; i < NTHREADS; i++) {
pthread_create(tids+i, NULL, barrier, ts+i);

}

for (i = 0; i < NTHREADS; i++) {
pthread_join(tids[i], &retval);

}
printf("done\n");

}

