
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 – 2011 / #4

Real Time and Embedded Data Systems and Computing

Message based Process-Process 
Synchronization and Communication 



T.B. Skaali, Department of Physics, University of Oslo 2FYS 4220/9220 - 2011 - Lecture  #4

Process-to-process messages
• Use of a single construct for both synchronisation

and transfer of data
• Three issues:

– the model of message transfer, synchronous vs. asynchronous
– the method of process naming
– the message structure

time

Process P1

send message

Process P2

receive message



T.B. Skaali, Department of Physics, University of Oslo 3FYS 4220/9220 - 2011 - Lecture  #4

Synchronous message handling
• No buffering, space for only one message, blocking

• Known as a rendezvous in Ada
– Analogy: a telephone connection, or the HTTP protocol
– A send-receive pair is both data transfer and synchronization

• But how can receiver process know that there is a message for her?

Process P1 Process P2

send

receive

Blocks until 
receiver is 
ready to 
receive the 
message ”Hi, there”

Blocks until 
sender has 
sent the 
message



T.B. Skaali, Department of Physics, University of Oslo 4FYS 4220/9220 - 2011 - Lecture  #4

Buffered communication

• Buffer space required
– Buffer write/read operations
– Blocking occurs when buffer is full for write or empty for read

• However, POSIX Asynchronous I/O is non-blocking!

Process P1 Process P2

send message

receive message
blocked

Message buffers

send replyreceive reply

blocked



T.B. Skaali, Department of Physics, University of Oslo 5FYS 4220/9220 - 2011 - Lecture  #4

Asynchronous communication 
• For example, an application may need to notify 

another that an event has occurred, but does not 
need to wait for a response. 

• Another example occurs in publish/subscribe
distributed systems, where an application "publishes" 
information for any number of clients to read. (A Real-Time 
example is the CERN ALICE High Level Trigger system comprising ~1000 processors)

• In both these examples it would not make sense for 
the sender of the information to have to wait if, for 
example, one of the recipients had crashed. 

• However, the communication may include a reply 
message, in this case the initial sender may want to 
read the answer when it suits her. 



T.B. Skaali, Department of Physics, University of Oslo 6FYS 4220/9220 - 2011 - Lecture  #4

Publisher/subscribers
• Searching the web for this method, one sees that it is 

mainly described in the context of general, 
distributed systems, for instance in servicing 
customers. http://msdn2.microsoft.com/en-us/library/ms978603.aspx

• However, it is also very interesting for distributed 
data acquisition / processing configurations



T.B. Skaali, Department of Physics, University of Oslo 7FYS 4220/9220 - 2011 - Lecture  #4

Some problems with asynchronous 
communication

• Potentially infinite buffers are needed to store unread 
messages

• The programs get more complex, in particular when 
signals (to be described in a later lecture) are used to notify 
the receiver

• It is probably more difficult to prove the correctness 
of a system

• What to do with messages which seems to be never 
read?

– In the IEEE 1596 Scalable Coherent Interface one can specify ”time-of-death” for a 
message



T.B. Skaali, Department of Physics, University of Oslo 8FYS 4220/9220 - 2011 - Lecture  #4

Process naming 

• Two distinct sub-issues 
– direction versus indirection
– symmetry

• With direct naming, the sender explicitly names the 
receiver:

send <message> to <process-name>

• With indirect naming, the sender names an 
intermediate entity (e.g. a channel, mailbox, link or 
pipe):

send <message> to <message queue>/channel/mailbox

(ref. B&W)



T.B. Skaali, Department of Physics, University of Oslo 9FYS 4220/9220 - 2011 - Lecture  #4

Process naming (contd)

• A naming scheme is symmetric if both sender and 
receiver name each other (directly or indirectly)
send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>

• It is asymmetric if the receiver names no specific 
source but accepts messages from any process
wait <message>

• Asymmetric naming fits the client-server paradigm 
• With indirect the intermediary could have:

– a many-to-one structure    
– a many-to-many structure 
– a one-to-one structure       
– a one-to-many   (as in publisher/subscribers)

(ref B&W) 



T.B. Skaali, Department of Physics, University of Oslo 10FYS 4220/9220 - 2011 - Lecture  #4

”Message queues”

• The generic name Message Queues is a software-
engineering component used for interprocess 
communication or inter-thread communication within 
the same process. It uses a queue for messaging –
the passing of control or of content

• Message queues provide an asynchronous 
communications protocol, meaning that the sender 
and receiver of the message do not need to interact 
with the message queue at the same time. 
Messages placed onto the queue are stored until the 
receiver retrieves them. 



T.B. Skaali, Department of Physics, University of Oslo 11FYS 4220/9220 - 2011 - Lecture  #4

VxWorks message queues
• Modern real-time applications are constructed as a set of 

independent but cooperating tasks. While semaphores provide 
a high-speed mechanism for the synchronization and 
interlocking of tasks, often a higher-level mechanism is 
necessary to allow cooperating tasks to communicate with each 
other. In VxWorks, the primary intertask communication 
mechanism within a single CPU is message queues. This is 
also seen in WindView traces.

• Message queues allow a variable number of messages, each of 
variable length, to be queued. Any task or Interrupt Service 
Routine (ISR – more about that in a later lecture) can send 
messages to a message queue. Any task can receive 
messages from a message queue. Multiple tasks can send to 
and receive from the same message queue. Full-duplex 
communication between two tasks generally requires two 
message queues, one for each direction  



T.B. Skaali, Department of Physics, University of Oslo

”Hello World” – intertask communication

12FYS 4220/9220 - 2011 - Lecture  #4

#include <iostream.h>

using namespace std;

void main()
{

cout << "Hello World!" << endl;   
cout << "Welcome to C++ Programming" << endl; 

}

WindView trace of ”Hello World”, see next 
page, note the message queue operations



T.B. Skaali, Department of Physics, University of Oslo

WindView trace of Hello World

13FYS 4220/9220 - 2011 - Lecture  #4



T.B. Skaali, Department of Physics, University of Oslo 14FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind and POSIX message queues

• There are two message-queue subroutine libraries in 
VxWorks 

• The first of these, msgQLib, provides Wind 
message queues, designed expressly for VxWorks;

• the second, mqPxLib, is compatible with the POSIX 
standard (1003.1b) for real-time extensions



T.B. Skaali, Department of Physics, University of Oslo 15FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind message queues

• Wind message queues are created and deleted with 
the routines shown below. This library provides 
messages that are queued in FIFO order, with a 
single exception: there are two priority levels, and 
messages marked as high priority are attached to 
the head of the queue. 
– msgQCreate( ) Allocate and initialize a message queue
– msgQDelete( ) Terminate and free a message queue.
– msgQSend( ) Send a message to a message queue
– msgQReceive( ) Receive a message from a message queue



T.B. Skaali, Department of Physics, University of Oslo 16FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind create message queue

• A message queue is created with msgQCreate( ). Its 
parameters specify the maximum number of 
messages that can be queued in the message 
queue and the maximum length in bytes of each 
message. Enough buffer space is preallocated for 
the specified number and length of messages

MSG_Q_ID msgQCreate 
( 
int maxMsgs,          /* max messages that can be queued */
int maxMsgLength,     /* max bytes in a message */ 
int options           /* message queue options */ 
) 

options:
MSG_Q_FIFO (0x00)      queue pended tasks in FIFO order
MSG_Q_PRIORITY (0x01)  queue pended tasks in priority order



T.B. Skaali, Department of Physics, University of Oslo 17FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind msg send message 

• A task or ISR sends a message to a message queue 
with msgQSend( ). If no tasks are waiting for 
messages on that queue, the message is added to 
the queue's buffer of messages. If any tasks are 
already waiting for a message from that message 
queue, the message is immediately delivered to the 
first waiting task 
STATUS msgQSend 

( 
MSG_Q_ID msgQId, /* message queue on which to send */ 
char * buffer,   /* message to send */ 
UINT nBytes,     /* length of message */ 
int timeout,     /* ticks to wait */ 
int priority     /* MSG_PRI_NORMAL or MSG_PRI_URGENT */ 

) 



T.B. Skaali, Department of Physics, University of Oslo 18FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind msg send priorities

• The msgQSend( ) function allows specification of 
the priority of the message as either 

normal (MSG_PRI_NORMAL) or 
urgent (MSG_PRI_URGENT). 

Normal priority messages are added to the tail of the 
list of queued messages, while urgent priority 
messages are added to the head of the list 



T.B. Skaali, Department of Physics, University of Oslo 19FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind receive message 
• A task receives a message from a message queue with 

msgQReceive( ). If messages are already available in the 
message queue's buffer, the first message is immediately 
dequeued and returned to the caller. If no messages are 
available, then the calling task blocks and is added to a queue 
of tasks waiting for messages. This queue of waiting tasks can 
be ordered either by task priority or FIFO, as specified in an 
option parameter when the queue is created 
int msgQReceive 

( 
MSG_Q_ID msgQId, /* message queue from which to receive */ 
char * buffer,   /* buffer to receive message */ 
UINT maxNBytes,  /* length of buffer */ 
int timeout      /* ticks to wait, 

or NO_WAIT (0) or WAIT_FOREVER (-1) */ 

)



T.B. Skaali, Department of Physics, University of Oslo 20FYS 4220/9220 - 2011 - Lecture  #4

VxWorks Wind msg timeouts

• Both msgQSend( ) and msgQReceive( ) take 
timeout parameters. When sending a message, the 
timeout specifies how many ticks to wait for buffer 
space to become available, if no space is available 
to queue the message. When receiving a message, 
the timeout specifies how many ticks to wait for a 
message to become available, if no message is 
immediately available. As with semaphores, the 
value of the timeout parameter can have the special 
values of NO_WAIT (0), meaning always return 
immediately, or WAIT_FOREVER (-1), meaning 
never time out the routine



T.B. Skaali, Department of Physics, University of Oslo 21FYS 4220/9220 - 2011 - Lecture  #4

Exam
ple 2.8 VxW

orks Program
m

er’s G
uide



T.B. Skaali, Department of Physics, University of Oslo 22FYS 4220/9220 - 2011 - Lecture  #4

Wind message queue benchmark
• Below is the result of a simple message queue benchmark in 

kB/sec for VxSim on a DELL D420 laptop with 1.20 GHz Intel CPU



T.B. Skaali, Department of Physics, University of Oslo 23FYS 4220/9220 - 2011 - Lecture  #4

POSIX message queues   (text: ref B&W)

• POSIX supports asynchronous, indirect message 
passing through the notion of message queues

• A message queue can have many readers and many 
writers 

• Priority may be associated with the queue
• Intended for communication between processes (not 

threads)
• Message queues have attributes which indicate their 

maximum size, the size of each message, the 
number of messages currently queued etc. 

• An attribute object is used to set the queue attributes 
when the queue is created 



T.B. Skaali, Department of Physics, University of Oslo 24FYS 4220/9220 - 2011 - Lecture  #4

POSIX message queues
• Message queues are given a name when they are created
• To gain access to the queue, requires an mq_open name
• mq_open is used to both create and open an already existing 

queue (also mq_close and mq_unlink)
• Sending and receiving messages is done via mq_send and  

mq_receive

• Data is read/written from/to a character buffer.
• If the buffer is full or empty, the sending/receiving process is 

blocked unless the attribute O_NONBLOCK has been set for 
the queue (in which case an error return is given)

• If senders and receivers are waiting when a message queue 
becomes unblocked, it is not specified which one is woken up 
unless the priority scheduling option is specified



T.B. Skaali, Department of Physics, University of Oslo 25FYS 4220/9220 - 2011 - Lecture  #4

POSIX message queues
• A process can also indicate that a signal should be sent to

it when an empty queue receives a message and there are
no waiting receivers

• In this way, a process can continue executing whilst
waiting for messages to arrive or one or more message
queues. This concept, named Asynchronous I/O or non-
blocking I/O, will be discussed in a later lecture.

• It is also possible for a process to wait for a signal to
arrive; this allows the equivalent of selective waiting to be
implemented

• If the process is multi-threaded, each thread is considered 
to be a potential sender/receiver in its own right



T.B. Skaali, Department of Physics, University of Oslo 26FYS 4220/9220 - 2011 - Lecture  #4

VxWorks POSIX message queues
• These routines are similar to Wind message queues, except

that POSIX message queues provide named queues and
messages with a range of priorities. A process can also indicate
that a signal should be sent to it when an empty queue receives
a message and there are no waiting receivers. Signals will be
covered in a later lecture.

• Before a set of tasks can communicate through a POSIX
message queue, one of the tasks must create the message
queue by calling mq_open( ) with the O_CREAT flag set. Once
a message queue is created, other tasks can open that queue
by name to send and receive messages on it. Only the first task
opens the queue with the O_CREAT flag; subsequent tasks
can open the queue for receiving only (O_RDONLY), sending
only (O_WRONLY), or both sending and receiving (O_RDWR)



T.B. Skaali, Department of Physics, University of Oslo 27FYS 4220/9220 - 2011 - Lecture  #4

VxWorks POSIX mq routines 
• mqPxLibInit( ) Initialize the POSIX message queue library

(non-POSIX)
mq_open( ) Open a message queue.
mq_close( ) Close a message queue.
mq_unlink( ) Remove a message queue.
mq_send( ) Send a message to a queue.
mq_receive( ) Get a message from a queue.
mq_notify( ) Signal a task that a message is waiting on

a queue.
mq_setattr( ) Set a queue attribute.
mq_getattr( ) Get a queue attribute.



T.B. Skaali, Department of Physics, University of Oslo 28FYS 4220/9220 - 2011 - Lecture  #4

VxWorks POSIX mq_send( )
• To put messages on a queue, use mq_send( ). If a

task attempts to put a message on the queue when
the queue is full, the task blocks until some other
task reads a message from the queue, making space
available. To avoid blocking on mq_send( ), set
O_NONBLOCK when you open the message
queue. In that case, when the queue is full,
mq_send( ) returns -1 and sets errno to EAGAIN
instead of pending, allowing you to try again or take
other action as appropriate

• One of the arguments to mq_send( ) specifies a
message priority. Priorities range from 0 (lowest
priority) to 31 (highest priority).



T.B. Skaali, Department of Physics, University of Oslo 29FYS 4220/9220 - 2011 - Lecture  #4

VxWorks POSIX mq_receive( )

• When a task receives a message using
mq_receive( ), the task receives the highest-priority
message currently on the queue. Among multiple
messages with the same priority, the first message
placed on the queue is the first received (FIFO
order). If the queue is empty, the task blocks until a
message is placed on the queue. To avoid pending
on mq_receive( ), open the message queue with
O_NONBLOCK; in that case, when a task attempts
to read from an empty queue, mq_receive( ) returns
-1 and sets errno to EAGAIN



T.B. Skaali, Department of Physics, University of Oslo 30FYS 4220/9220 - 2011 - Lecture  #4

Exam
ple 2.9 VxW

orks Program
m

er’s G
uide –

p1



T.B. Skaali, Department of Physics, University of Oslo 31FYS 4220/9220 - 2011 - Lecture  #4

Exam
ple 2.9 VxW

orks Program
m

er’s G
uide –

p2



T.B. Skaali, Department of Physics, University of Oslo 32FYS 4220/9220 - 2011 - Lecture  #4

Exam
ple 2.9 VxW

orks Program
m

er’s G
uide –

p3



T.B. Skaali, Department of Physics, University of Oslo

VxWorks demo p 1 of 4

33FYS 4220/9220 - 2011 - Lecture  #4

/* VxWorks Wind and POSIX message queues */

#include "vxWorks.h"
#include "msgQLib.h"
#include "taskLib.h"
#include "time.h"
#include "stdio.h"

#include "POSIXerrno.c“ /* Skaali routine */

/* Number of messages in queue, length of message */
#define MSG_MAX 4
#define MSG_LEN 16

MSG_Q_ID myMsgQId;

STATUS show_OBJ_error (int errn)
{

if (errn == S_objLib_OBJ_ID_ERROR) printf("OBJ_ID_ERROR\n");
if (errn == S_objLib_OBJ_UNAVAILABLE) printf("OBJ_UNAVAILABLE\n");
if (errn == S_objLib_OBJ_DELETED) printf("OBJ_DELETED\n");
if (errn == S_objLib_OBJ_TIMEOUT) printf("OBJ_TIMEOUT\n");
if (errn == S_objLib_OBJ_NO_METHOD) printf("OBJ_NO_METHOD\n");
return (OK);

}



T.B. Skaali, Department of Physics, University of Oslo

VxWorks demo p 2 of 4

34FYS 4220/9220 - 2011 - Lecture  #4

/* --- WIND message queue example --- */

STATUS msqWIND (void)
{

int msgl, loop;
char msgBuf[MSG_LEN];
msgl = MSG_LEN; /* max bytes in a message */

/* create message queue */
if ((myMsgQId = msgQCreate (MSG_MAX, MSG_LEN, MSG_Q_PRIORITY)) == NULL)

return (ERROR);

/* fill message queue */
for (loop = 0; loop<MSG_MAX; loop++) {

if (msgQSend (myMsgQId, msgBuf, msgl, 
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)

return (errno);
}
printf("fill message queue OK, try one more message in NO_WAIT mode\n");
if (msgQSend (myMsgQId, msgBuf, msgl, 

NO_WAIT, MSG_PRI_NORMAL) == ERROR) {
show_OBJ_error (errno);
return (errno);

}

msgQDelete (myMsgQId);
return (OK);

}



T.B. Skaali, Department of Physics, University of Oslo

VxWorks demo p 3 of 4

35FYS 4220/9220 - 2011 - Lecture  #4

/* --- POSIX message queue example --- */
#include "mqueue.h"
#include "fcntl.h"
#define MSQ_NAME "POSIXmsq"
#define MODE 0
#define MSGPRI 31

STATUS msqPOSIX()
{ 

mqd_t mq_descr; /* msg queue descriptor */
mode_t mode=(mode_t)MODE; /* mode, dummy */
struct mq_attr ma; /* queue attributes */
int loop;
char  msgBuf[MSG_LEN];

/* set the required message queue attributes */
ma.mq_flags = 0;
ma.mq_flags  = O_NONBLOCK; /* Immediate  return */
ma.mq_maxmsg = MSG_MAX;
ma.mq_msgsize = MSG_LEN; /* max bytes in a message */

/* Create and open message queues */
if ((mq_descr = mq_open (MSQ_NAME, O_RDWR|O_CREAT, mode, &ma))

== (mqd_t)-1) {
return(errno);

}
/* fill message queue */
for (loop = 0; loop<MSG_MAX; loop++)

if (mq_send (mq_descr, msgBuf, ma.mq_msgsize, MSGPRI) != OK) {
printf("\nmq_send error %d", errno);
mq_unlink (MSQ_NAME);

}

printf("fill message queue OK, try one more message in NONBLOCK mode\n");
if (mq_send (mq_descr, msgBuf, ma.mq_msgsize, MSGPRI) != OK) {

printPOSIXerrorcode (errno);
mq_unlink (MSQ_NAME);
return (errno);

}
return (OK);

}



T.B. Skaali, Department of Physics, University of Oslo

VxWorks demo p 4 of 4

36FYS 4220/9220 - 2011 - Lecture  #4

Run the message queue demo tasks:

-> msqPOSIX
fill message queue OK, try one more message in NONBLOCK mode
POSIX error EAGAIN - No more processes
value = 2 = 0x2

-> msqWIND
fill message queue OK, try one more message in NO_WAIT mode
OBJ_UNAVAILABLE
value = 3997698 = 0x3d0002
-> 

Note different error return codes from Wind and POSIX send-message 
when message buffer is full!



T.B. Skaali, Department of Physics, University of Oslo

Summary of VxWorks message queue features

37FYS 4220/9220 - 2011 - Lecture  #4

Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues
Message Priority Levels 1 32
Blocked Task Queues FIFO or priority-based Priority-based
Receive with Timeout Optional Not available
Task Notification Not available Optional (one task)
Close/Unlink Semantics No Yes

Another important feature of POSIX message queues is, of course, portability: if you are migrating to 
VxWorks from another 1003.1b-compliant system, using POSIX message queues enables you to 
leave that part of the code unchanged, reducing the porting effort.



T.B. Skaali, Department of Physics, University of Oslo

Servers and Clients with Message Queues

38FYS 4220/9220 - 2011 - Lecture  #4

Real-time systems are often structured using a client-server
model of tasks. In this model, server tasks accept requests 
from client tasks to perform some service, and usually return 
a reply. The requests and replies are usually made in the 
form of intertask –(process) messages. In VxWorks, 
message queues or pipes are a natural way to implement 
this.
For example, client-server communications might be 
implemented as shown in figure. Each server task creates a 
message queue to receive request messages from clients. 
Each client task creates a message queue to receive reply 
messages from servers. Each request message includes a 
field containing the msgQId of the client's reply message 
queue. A server task's "main loop" consists of reading 
request messages from its request message queue, 
performing the request, and sending a reply to the client's 
reply message queue.



T.B. Skaali, Department of Physics, University of Oslo 39FYS 4220/9220 - 2011 - Lecture  #4

Other InterProcessCommunication facilities
• Pipes- VxWorks supports pipe devices

• status = pipeDevCreate ("/pipe/name", max_msgs, max_length);
• Tasks can use standard I/O routines to open, read and write pipes, and invoke ioctl routines 

• Sockets
• A socket is an endpoint for communications between tasks; data is sent from one socket to 

another.
• VxWorks supports the Internet protocols TCP and UDP 

• Remote Procedure calls
• Remote Procedure Calls (RPC) is a facility that allows a process on one machine to call a 

procedure that is executed by another process on either the same machine or a remote 
machine. Internally, RPC uses sockets as the underlying communication mechanism. Thus 
with RPC, VxWorks tasks and host system processes can invoke routines that execute on 
other VxWorks or host machines, in any combination.

• Some IPC methods will be discussed further in the lecture on Real-Time 
facilities and I/O. IPC is a key issue in Computer science, and for those 
who are interested, a few zillion papers are available on this subject


