
T.B. Skaali, Department of Physics, University of Oslo

FYS 4220/9220 – 2011 / #5

Real Time and Embedded Data Systems and Computing

Exceptions and Signals

T.B. Skaali, Department of Physics, University of Oslo 2FYS 4220/9220 - 2011 - Lecture #5

Exceptions - definition
• An exception is a generic term for an event that occurs during

the execution of a program that disrupts the normal flow of
program execution.

• Exceptions can occur at many levels:
– Hardware/operating system/ language level.

• Arithmetic exceptions; divide by 0, under/overflow, etc
• Memory access violations; segment fault, stack over/underflow.
• Type conversion; illegal values, improper casts.
• Bounds violations; illegal array indices.
• Bad references; null pointers.

– Processor architecture level
• Interrupts

– Program level.
• User or system defined exceptions – signals
• Error return from system calls

• Exception handling is a ”can of worms” (in other words: tricky stuff)

© Alan Burns and Andy Wellings, 2001

Classes of Exceptions

 Detected by the environment and raised synchronously;
e.g. array bounds error or divide by zero

 Detected by the application and raised synchronously, e.g.
the failure of a program-defined assertion check

 Detected by the environment and raised asynchronously;
e.g. an exception raised due to the failure of some
monitoring mechanism

 Detected by the application and raised asynchronously;
e.g. one process may recognise that an error condition has
occurred which will result in another process not meeting
its deadline or not terminating correctly

T.B. Skaali, Department of Physics, University of Oslo 4FYS 4220/9220 - 2011 - Lecture #5

Exception handling: general requirements (ref. B&W)

• There are a number of general requirements for an
exception handling facility:
– R1: The facility must be simple to understand and use
– R2: The code for exception handling should not obscure

understanding of the program's normal error-free operation
– R3: The mechanism should be designed so that run-time

overheads are incurred only when handling an exception
– R4: The mechanism should allow the uniform treatment of

exceptions detected both by the environment and by the
program

– R5: the exception mechanism should allow recovery actions
to be programmed

• Great, easy to write down but not that easily implemented!
Some examples follow.

© Alan Burns and Andy Wellings, 2001

Assembly language: Forced Branch

 Used mainly in assembly languages. Example: programming a
microcontroller
– the typical mechanism is for subroutines to skip return
– the instruction following the subroutine call is skipped to indicate the

presence/absence of an error
– achieved by incrementing its return address (program counter) by the

length of a simple jump instruction
– where more than one exceptional return is possible, the PC can be

manipulated accordingly
jsr pc, PRINT_CHAR
jmp IO_ERROR
jmp DEVICE_NOT_ENABLED
normal processing

 Approach incurs little overhead(R3) and enables recovery actions to be
programmed(R5). It can lead to obscure program structures and,
therefore, violates requirements R1 and R2. R4 also cannot be satisfied

T.B. Skaali, Department of Physics, University of Oslo 6FYS 4220/9220 - 2011 - Lecture #5

The simple minded approach (ref. B&W)

• Unusual return value or error return from a procedure or a
function.

• C supports this approach, cf. VxWorks

if(function_call(parameters) == ERROR) {
-- error handling code

} else {
-- normal return code

};

• Meets the simplicity requirement R1 and allows recovery
actions to be programmed (R5)

• Fails to satisfy R2, R3 and R4; the code becomes spaghetti (my

characterization), it entails overheads every time it is used, and it is
not clear how to handle errors detected by the environment

T.B. Skaali, Department of Physics, University of Oslo 7FYS 4220/9220 - 2011 - Lecture #5

Language support of exceptions
• Older languages like FORTRAN, C: none
• Languages like Ada, C++, Java have added language

constructs to facilitate exception handling
– try block
– throw an exception
– catch an exception

Figures from McGraw-Hill Companies, Inc, web

T.B. Skaali, Department of Physics, University of Oslo

Exception handling in C++

• The designers of C++, Bell labs, extended it with exception handling structures. The
commands being used relate closely to the terms used in exception handling. The block of
code you want to try starts with specifying the try command and surrounding the block with
curly braces. Within this block, you can throw any occurring errors with the throw
command. You must specify an error and this should be a class but let us ignore that now.
Immediately after the try-block is closed, the catch-block starts. Here the error handling
code is placed. The piece of pseudo code on next page will show the idea

• We can chain multiple handlers (catch expressions), each one with a different parameter
type. Only the handler that matches its type with the argument specified in the throw
statement is executed. If we use an ellipsis (...) as the parameter of catch, that handler will
catch any exception no matter what the type of the throw exception is. This can be used as
a default handler that catches all exceptions not caught by other handlers if it is specified at
last. In this case the last handler would catch any exception thrown with any parameter that
is neither an int nor a char.

try {
// code here
}

catch (int param) { cout << "int exception"; }
catch (char param) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

8FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo 9FYS 4220/9220 - 2011 - Lecture #5

C++ exception throw and catch

The function will throw DivideByZero as an exception that can then be caught by an
exception-handling catch statement that catches exceptions of type int. The necessary
construction for catching exceptions is a try catch system. If you wish to have your
program check for exceptions, you must enclose the code that may have exceptions thrown
in a try block. For example:

T.B. Skaali, Department of Physics, University of Oslo

The C++ exception demo implemented under vxWorks

10FYS 4220/9220 - 2011 - Lecture #5

// C++ try/throw/catch on VxWorks
#include <vxWorks.h>
#include <iostream.h>
#include <string>

const int DivideByZero = 10;
double divide (double x, double y)
{

if (y == 0)
{

throw DivideByZero;
}
return x/y;

}

void throw_shit()
{

try
{

divide (10,0);
}

catch (int i)
{

if (i==DivideByZero)
{

cerr <<"Divide by zero error" <<endl;
}

}
cout <<"Shit happens" <<endl;

}

Output on console:

-> throw_shit
Shit happens
value = 4664368 = 0x472c30 = _cout

Output on error device:

Divide by zero error

Fine, but what to do after the exception has been
catched??

T.B. Skaali, Department of Physics, University of Oslo

Interrupts
• Interrupts are (in general) hardware signals from external devices

which request services, typical for I/O operations.
• When an interrupt occurs the processor will switch to an interrupt

level which will freeze the execution of user processes. (Normally all
user processes are executed on the same hardware level). The
number of interrupt levels is architecture dependent.

• Since many devices may be connected to a processor and also to the
same interrupt level, a mechanism is required to identify the source of
the interrupt

• Interrupts / exceptions are typically hardware bound to a vector value
which is used as a lookup key in a exception table. The content of the
table are address pointers to the corresponding interrupt service /
exception routine.

• A very important number is the interrupt latency: the time from the
occurence of the interrupt signal until the interrupt service routine is
entered.

11FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo 12FYS 4220/9220 - 2011 - Lecture #5

A simple case study: the MC68K exception vectors

T.B. Skaali, Department of Physics, University of Oslo

PowerPC440 interrupts and exceptions
• An interrupt is the action in which the processor saves its old

context (Machine State Register (MSR) and next instruction
address) and begins execution at a pre-determined interrupt-
handler address, with a modified MSR.

• Exceptions are the events that may cause the processor to take
an interrupt, if the corresponding interrupt type is enabled.
– Exceptions may be generated by the execution of instructions, or by

signals from devices external to the PPC440, the internal timer
facilities, debug events, or error conditions.

• The interrupt/exception handling on the PPC440 is much more
advanced than on the old MC68K architecture!

– PPC440 Interrupt classes:
• Asynchronous or Synchronous
• Critical or Non-Critical
• Machine Check interrupts are a special case. They are typical caused by hardware

or storage subsystem failure, or by an attempt to access an invalid address.

13FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo

PPC440 interrupt classes
• Asynchronous:

– are caused by events that are independent of instruction execution

• Synchronous:
– are those that are caused directly the execution (or attempted execution) of instructions.

They are characterized as Precise or Imprecise interrupts

• Critical and Non-Critical:
– Certain interrupt types demand immediate attention, even if other interrupt types are

currently being processed and have not yet had the opportunity to save the state of the
machine (that is, return address and captured state of the MSR). To enable taking a
critical interrupt immediately after a non-critical interrupt has occurred (that is, before the
state of the machine has been saved), two sets of Save/Restore Register pairs are
provided. Critical interrupts use the Save/Restore Register pair CSRR0/CSRR1. Non-
Critical interrupts use Save/Restore Register pair.

• PPC440 interrupt architecture:
– Associated with each kind of interrupt is an interrupt vector, that is, the address of the

initial instruction that is executed when the corresponding interrupt occurs. Interrupt
processing consists of saving a small part of the processor state in certain registers,
identifying the cause of the interrupt in another register, and continuing execution at the
corresponding interrupt vector location.

14FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo

Interrupt processing
• An interrupt will be processed either by

– i) a system driver
– ii) a user written driver installed in the Operating system
– iii) For VxWorks: a user C routine connected to the interrupt vector

by means of the library call intConnect()

• After the interrupt has been processed the normal
execution of the interrupted user process is
continued
– Since processing on an processor interrupt level will freeze all

activities on the application level the time spent on an interrupt
level should be as short as possible

15FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo 16FYS 4220/9220 - 2011 - Lecture #5

VxWorks ISRs (VxWorks Programmer’s Guide)

2.5 Interrupt Service Code
– Hardware interrupt handling is of key significance in real-time systems, because

it is usually through interrupts that the system is informed of external events. For
the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context outside of any task's context. Thus, interrupt
handling involves no task context switch. The interrupt routines, listed in
Table 2-22, are provided in intLib and intArchLib, latter defines architecture.

– VxWorks includes default interrupt drivers for I/O, network, etc
– Table 2-22: Interrupt Routines Call Description

intConnect() Connect a C routine to an interrupt vector
intContext() Return TRUE if called from interrupt level
intCount() Get the current interrupt nesting depth
intLevelSet() Set the processor interrupt mask level
intLock() Disable interrupts
intUnlock() Re-enable interrupts
intVecBaseSet() Set the vector base address
intVecBaseGet() Get the vector base address
intVecSet() Set an exception vector
intVecGet() Get an exception vector

T.B. Skaali, Department of Physics, University of Oslo

Signals
• A signal is a limited form of inter-process

communication used in Unix, Unix-like, and other
POSIX-compliant operating systems. Essentially it is
an asynchronous notification sent to a process in
order to notify it of an event that occurred. When a
signal is sent to a process, the operating system
interrupts the process's normal flow of execution.
Execution can be interrupted during any non-atomic
instruction. If the process has previously registered a
signal handler, that routine is executed. Otherwise
the default signal handler is executed.
– Typing certain key combinations at the controlling terminal of a

running process causes the system to send it certain signals

17FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo 18FYS 4220/9220 - 2011 - Lecture #5

VxWorks signals
• VxWorks supports a software signal facility.

– Signals will asynchronously alter the control flow of a task.
– Any task or Interrupt Service Routine (ISR) can raise a signal for a

particular task. The task being signaled immediately suspends its current
thread of execution and executes the task-specified signal handler routine
the next time it is scheduled to run.

– The signal handler executes in the receiving task's context and makes use
of that task's stack. The signal handler is invoked even if the task is
blocked, for instance when waiting for a sempahore or a message queue
transfer. Furthermore, an immediate return from a semaphore/message
queue routine will take place with an error code. Therefore, always test
the return value!

– The wind kernel supports two types of signal interface: UNIX BSD-style
signals and POSIX-compatible signals.

• The POSIX-compatible signal interface, in turn, includes both the
fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b.

– In general, signal handlers should be treated like ISRs; no routine should
be called from a signal handler that might cause the handler to block.

T.B. Skaali, Department of Physics, University of Oslo 19FYS 4220/9220 - 2011 - Lecture #5

Classes of (VxWorks) signals
• Signals as defined in signal.h are listed on the next

page. Basically there are two classes:
• i) those orginating from exceptions catched by the

processor hardware, like bus errors, and
• ii) those asserted by a process (task), like realtime

signals
• Whatever the origin is, the signal will trigger the

signal handler provided that the signal has been
linked to the handler.
– A missing signal handler will cause the process (task) to be

aborted

T.B. Skaali, Department of Physics, University of Oslo 20FYS 4220/9220 - 2011 - Lecture #5

/* Signal Numbers:
* Required .1 signals 1-13
* Job Control signals 14-19 (not implemented but must be defined)
* Realtime signals 20-27
*/
#define SIGHUP 1 /* hangup */
#define SIGINT 2 /* interrupt */
#define SIGQUIT 3 /* quit */
#define SIGILL 4 /* illegal instruction (not reset when caught) */
#define SIGTRAP 5 /* trace trap (not reset when caught) */
#define SIGABRT 6 /* used by abort, replace SIGIOT in the future */
#define SIGEMT 7 /* EMT instruction */
#define SIGFPE 8 /* floating point exception */
#define SIGKILL 9 /* kill (cannot be caught or ignored) */
#define SIGBUS 10 /* bus error */
#define SIGSEGV 11 /* segmentation violation */
#define SIGFMT 12 /* STACK FORMAT ERROR (not posix) */
#define SIGPIPE 13 /* write on a pipe with no one to read it */
#define SIGALRM 14 /* alarm clock */
#define SIGTERM 15 /* software termination signal from kill ()*/

#define SIGSTOP 17 /* sendable stop signal not from tty */
#define SIGTSTP 18 /* stop signal from tty */
#define SIGCONT 19 /* continue a stopped process */
#define SIGCHLD 20 /* to parent on child stop or exit */
#define SIGTTIN 21 /* to readers pgrp upon background tty read */
#define SIGTTOU 22 /* like TTIN for output if (tp->t_local<OSTOP) */

#define SIGUSR1 30 /* user defined signal 1 */
#define SIGUSR2 31 /* user defined signal 2 */

#define SIGRTMIN 23 /* Realtime signal min */
#define SIGRTMAX 29 /* Realtime signal max */

VxWorks ”signal.h”

T.B. Skaali, Department of Physics, University of Oslo 21FYS 4220/9220 - 2011 - Lecture #5

Hardware exceptions MC68K and PPC

T.B. Skaali, Department of Physics, University of Oslo

(VxWorks) Signal Handler basics

A signal handler is a routine which is
declared by the application program to be
a signal handler for the process (task). A
signal handler binds to a particular signal
with sigvec() and sigaction() system
calls. An application may declare several
handlers.

The signal handler is invoked when the
signal is asserted. It is executed within
the context of the task which has
installed the handler. The signal value is
the entry value. The handler is executed
even if the task is blocked!

How is the communication between the
handler and the main program
established? For instance, what to do if
the signal originates from a division by
zero in the main program? We will soon
return to this problem.

22FYS 4220/9220 - 2011 - Lecture #5

Signal Handler

Main program

SIGNAL

T.B. Skaali, Department of Physics, University of Oslo

VxWorks signal calls

23FYS 4220/9220 - 2011 - Lecture #5

Table 2-20: Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b UNIX BSD Description
Compatible Compatible

signal() signal() Specify the handler associated with a signal.
kill() kill() Send a signal to a task.
raise() N/A Send a signal to yourself.
sigaction() sigvec() Examine or set the signal handler for a signal.
sigsuspend() pause() Suspend a task until a signal is delivered.
sigpending() N/A Retrieve a set of pending signals blocked from delivery.
sigemptyset() sigfillset() sigaddset() Manipulate a signal mask
sigsetmask() sigdelset() sigismember()
sigprocmask() sigsetmask() Set the mask of blocked signals.
sigprocmask() sigblock() Add to a set of blocked signals.

Table 2-21: POSIX 1003.1b Queued Signal Calls
Call Description
sigqueue() Send a queued signal.
sigwaitinfo() Wait for a signal.
sigtimedwait() Wait for a signal with a timeout.

T.B. Skaali, Department of Physics, University of Oslo

VxWorks signal handler installation, an incomplete example

• /* signal handler invoked when a signal is sent to the process that the handler belongs to */
• void taskASigHandler (int sig, struct siginfo *info, void *pContext)
• {
• if (sig == SIGUSR1) --- action #1 whatever that may be --- ;
• if (sig == SIGUSR2) --- action #2 whatever that may be ---;
• if (sig == SIGKILL) --- can not be caught according to signal.h ;
• }
• ……………………………………………………………………………………..
• /* main program */
• /* spawn interactively or by another task (process) */
• - - - - - - - - - - - - - - - -
• struct sigaction Saction;
• struct siginfo Sinfo;

• /* set up signal handler for accepted signals , see definitions in signal.h */
• Saction.sa_sigaction = taskASigHandler ;
• Saction.sa_flags = SA_SIGINFO; /* because handler needs the siginfo structure as an

argument, the SA_SIGINFO flag is set in sa_flags. */
• sigemptyset (&Saction.sa_mask);
• /* bind the signal handler to following signals */
• sigaction (SIGUSR1, &Saction, NULL);
• sigaction (SIGUSR2, &Saction, NULL);
• sigaction (SIGKILL, &Saction, NULL);
• -

24FYS 4220/9220 - 2011 - Lecture #5

T.B. Skaali, Department of Physics, University of Oslo 25FYS 4220/9220 - 2011 - Lecture #5

Now the tricky part: What to do after exceptions?

• In the following we will disregard ”normal” I/O
interrupts, they are handled by the appropriate
drivers.

• The problem is to make a connection between the
exception as catched by the signal handler and the
”application” program that caused the exception
– In the following we will term as exception also error

conditions which are detected directly by the application, for
instance an error return from a system call

• Some of the following pages are from the book by
Burns and Wellings

© Alan Burns and Andy Wellings, 2001

The Domain of an Exception Handler

 Within a program, there may be several handlers for particular
exceptions
– One can install a signal handler for several types of exception,

as shown in the previous example code, or one can install a
handler for each type

 Associated with each handler is a domain which specifies the
region of computation during which, if an exception occurs, the
handler will be activated

 The accuracy with which a domain can be specified will determine
how precisely the source of the exception can be located

 An exception does not necessarily reflects an error, the signal
feature is also a valid inter-process communication method.

 However, if the exception is caused by an error, then there a need
for a recovery action. “For RT systems, to fail is not an option!”

© Alan Burns and Andy Wellings, 2001

Resumption versus termination model

 Should the invoker (= application) of the exception
continue its execution after the exception has been
handled ??

 If the invoker can continue, then it may be possible for
the handler to cure the problem that caused the
exception to be raised and for the invoker to resume as
if nothing has happened

 This is referred to as the resumption or notify model
 The model where control is not returned to the invoker is

called termination or escape
 A model in which the handler can decide whether to

resume the operation which caused the exception, or to
terminate the operation; is called the hybrid model

© Alan Burns and Andy Wellings, 2001

The Resumption Model

 Consider three procedures P, Q and R on next page
 P invokes Q which in turn invokes R.
 R raises an exception which is handled by Q assuming there is no

local handler in R.
 The handler for r is Hr.
 In the course of handling r, Hr raises exception q which is handled

by Hq in procedure P (the caller of Q).
 Once this has been handled Hr continues its execution and when

finished R continues
 Most easily understood by viewing the handler as an implicit

procedure which is called when the exception is raised

© Alan Burns and Andy Wellings, 2001

The Resumption Model

Hq

Hr

P

Q

R

P invokes Q

Q invokes R
R raises r

Hr raises q

Hq resumes
Hr

Hr
resumes R

© Alan Burns and Andy Wellings, 2001

Comments on the Resumption Model

 Problem: it is difficult to repair errors raised by the RTS
 Eg, an arithmetic overflow in the middle of a sequence of complex

expressions results in registers containing partial evaluations; calling the
handler overwrites these registers

 Implementing a strict resumption model is difficult, a compromise is to re-
execute the block associated with the exception handler

 Note that for such a scheme to work, the local variables of the block must
not be re-initialised on a retry

 The advantage of the resumption model comes when the exception has
been raised asynchronously and, therefore, has little to do with the current
process execution

© Alan Burns and Andy Wellings, 2001

The Termination Model

 In the termination model, when an exception has been raised and
the handler has been called, control does not return to the point
where the exception occurred

 Instead the block or procedure containing the handler is terminated,
and control is passed to the calling block or procedure

 An invoked procedure, therefore, may terminate in one of a number
of conditions

 One of these is the normal condition, while the others are exception
conditions

 When the handler is inside a block, control is given to the first
statement following the block after the exception has been handled

© Alan Burns and Andy Wellings, 2001

Exception Handling and Operating Systems

 Languages like Ada or Java will usually be executed on top of an
operating system

 These systems will detect certain synchronous error conditions, eg,
memory violation or illegal instruction

 This will usually result in the process being terminated; however, many
systems allow error recovery

 POSIX allows handlers to be called when these exceptions are
detected (called signals in POSIX)

 Once the signal is handled, the process is resumed at the point where
it was “interrupted” — hence POSIX supports the resumption model

 If a language supports the termination model, the RTSS must catch
the error and manipulate the program state so that the program can
use the termination model

© Alan Burns and Andy Wellings, 2001

Summary

 With the resumption model, the invoker of the exception is resumed
at the statement after the one at which the exception was invoked

 With the termination model, the block or procedure containing the
handler is terminated, and control is passed to the calling block or
procedure.

 The hybrid model enables the handler to choose whether to resume
or to terminate

 Parameter passing to the handler -- may or may not be allowed

© Alan Burns and Andy Wellings, 2001

C Exceptions

 C does not define any exception handling facilities

 This clearly limits its in the structured programming of reliable
systems

 However, it is possible to provide some form of exception
handling mechanism by using the C macro facility

 To implement a termination model, it is necessary to save the
status of a program's registers etc. on entry to an exception
domain and then restore them if an exception occurs.

 The POSIX facilities of setjmp and longjmp can be used for
this purpose

© Alan Burns and Andy Wellings, 2001

setjmp and longjmp

 setjmp saves the program status and returns a 0

 longjmp restores the program status and results in the
program abandoning its current execution and restarting from
the position where setjmp was called

 This time setjmp returns the values passed by longjmp

T.B. Skaali, Department of Physics, University of Oslo 36FYS 4220/9220 - 2011 - Lecture #5

A naive Exception handling in C
/* The simplest error handling based on setjmp() and longjmp() */

#include "vxWorks.h"
#include "stdio.h"
#include "setjmp.h"

jmp_buf jumper;

int SomeFunction(int a, int b)
{

if (b == 0) longjmp(jumper, -3); /* can't divide by 0 */
return a / b;

}

void SomeTask (void)
{

int result;
if (setjmp(jumper) == 0) /* returns here after exception with setjmp() != 0 */
{

result = SomeFunction(7, 0);
/* continue working with result if OK
- */

}
else

printf("an error occurred, but what to do now?\n");
}

T.B. Skaali, Department of Physics, University of Oslo 37FYS 4220/9220 - 2011 - Lecture #5

A principle for a more general approach?

• The preceding example relies on a single global variable
jumper of type jump_buf . However, one may need different
exception handlers in different functions. So how will
SomeFunction() know which jumper to use?

• Needed: a dynamically linked list of exception handler records,
containing a jump_buf struct and whatever additional
information which is needed.

• Each function which defines an exception handler adds such a
record to the list and removes it from the list when it returns.

T.B. Skaali, Department of Physics, University of Oslo 38FYS 4220/9220 - 2011 - Lecture #5

The exception handling effectiveness of POSIX operating systems
Koopman, P.; DeVale, J.
Software Engineering, IEEE Transactions on
Volume 26, Issue 9, Sep 2000 Page(s):837 - 848

• Summary (1/2): Operating systems form a
foundation for robust application software, making it
important to understand how effective they are at
handling exceptional conditions. The Ballista testing
system was used to characterize the handling of
exceptional input parameter values for up to 233
POSIX functions and system calls on each of 15
widely used operating system (OS) implementations.
This identified ways to crash systems with a single
call, ways to cause task hangs within OS code, ways
to cause abnormal task termination within OS and
library code, failures to implement defined POSIX
functionality, and failures to report unsuccessful
operations.

– Ballista approach: automatic creation and execution of N sets of invalid
input data

T.B. Skaali, Department of Physics, University of Oslo 39FYS 4220/9220 - 2011 - Lecture #5

The exception handling effectiveness of POSIX operating systems
Koopman, P.; DeVale, J.
Software Engineering, IEEE Transactions on
Volume 26, Issue 9, Sep 2000 Page(s):837 - 848

• Summary (2/2):
– Overall, only 55 percent to 76 percent of the exceptional

tests performed generated error codes, depending on the
operating system being tested.

– Approximately 6 percent to 19 percent of tests failed to
generate any indication of error despite exceptional inputs.

– Approximately 1 percent to 3 percent of tests revealed
failures to implement defined POSIX functionality for
unusual, but specified, situations.

– Between 18 percent and 33 percent of exceptional tests
caused the abnormal termination of an OS system call or
library function, and five systems were completely crashed
by individual system calls with exceptional parameter
values. The most prevalent sources of these robustness
failures were illegal pointer values, numeric overflows, and
end-of-file overruns

T.B. Skaali, Department of Physics, University of Oslo 40FYS 4220/9220 - 2011 - Lecture #5

POSIX defined signals (not all of them)

The default actions are as follows:

T Abnormal termination of the
process. The process is terminated
with all the consequences of _exit()
except that the status made available
to wait() and waitpid() indicates
abnormal termination by the specified
signal.

A Abnormal termination of the
process.
[XSI] Additionally, implementation-
defined abnormal termination actions,
such as creation of a core file, may
occur.

I Ignore the signal
S Stop the process
C Continue the process, if it is

stopped; otherwise, ignore the signal.

In addition, the Real-Time
extension of POSIX defines the
RTSIG_MAX signals
SIGRTMIN to SIGRTMAX

T.B. Skaali, Department of Physics, University of Oslo 41FYS 4220/9220 - 2011 - Lecture #5

VxWorks task exception handling

• Errors in program code or data can cause hardware
exception conditions such as illegal instructions, bus
or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of
all such exceptions. The default exception handler
suspends the task that caused the exception, and
saves the state of the task at the point of the
exception. The kernel and other tasks continue
uninterrupted. A description of the exception is
transmitted to the Tornado development tools, which
can be used to examine the suspended task

T.B. Skaali, Department of Physics, University of Oslo 42FYS 4220/9220 - 2011 - Lecture #5

VxWorks POSIX Queued Signals

• The sigqueue() routine provides an alternative to kill() for sending
signals to a task. The important differences between the two are:

• sigqueue() includes an application-specified value that is sent as part
of the signal. You can use this value to supply whatever context your
signal handler finds useful. This value is of type sigval (defined in
signal.h); the signal handler finds it in the si_value field of one of its
arguments, a structure siginfo_t. An extension to the POSIX
sigaction() routine allows you to register signal handlers that accept
this additional argument

• sigqueue() enables the queueing of multiple signals for any task. The
kill() routine, by contrast, delivers only a single signal, even if multiple
signals arrive before the handler runs!

• VxWorks includes seven signals reserved for application use,
numbered consecutively from SIGRTMIN. The presence of these
reserved signals is required by POSIX 1003.1b, but the specific signal
values are not; for portability, specify these signals as offsets from
SIGRTMIN (for example, write SIGRTMIN+2 to refer to the third
reserved signal number)

T.B. Skaali, Department of Physics, University of Oslo 43FYS 4220/9220 - 2011 - Lecture #5

VxWorks Signal Codes

• Defined in header files, under ….target/h:
– sigCodes.h
– signal.h
– arch/<processor>/…

• How to program signals and exceptions will be
demonstrated in lab exercises

© Alan Burns and Andy Wellings, 2001

Summary I

 All exception handling models address the following
issues
– Exception representation: an exception may, or may not, be

explicitly represented in a language
– The domain of an exception handler: associated with each

handler is a domain which specifies the region of computation
during which, if an exception occurs, the handler will be
activated

– Exception propagation: when an exception is raised and there
is no exception handler in the enclosing domain, either the
exception can be propagated to the next outer level enclosing
domain, or it can be considered to be a programmer error

– Resumption or termination model: this determines the action to
be taken after an exception has been handled.

© Alan Burns and Andy Wellings, 2001

Summary II

 With the resumption model, the invoker of the exception
is resumed at the statement after the one at which the
exception was invoked

 With the termination model, the block or procedure
containing the handler is terminated, and control is
passed to the calling block or procedure.

 The hybrid model enables the handler to choose
whether to resume or to terminate

 Parameter passing to the handler -- may or may not be
allowed

© Alan Burns and Andy Wellings, 2001

Summary III

 It is not unanimously accepted that exception handling facilities
should be provided in a language

 The C and the occam2 languages, for example, have none
 To sceptics, an exception is a GOTO where the destination is

undeterminable and the source is unknown!
 They can, therefore, be considered to be the antithesis of structured

programming
 This is, however, not the view taken by the computer scientists

Burns and Wellings!

