
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 / 9220 – 2011 / #9

Real Time and Embedded Data Systems and Computing

Reliability and Fault Tolerance – revised 30 Oct 2011

T.B. Skaali, Department of Physics, University of Oslo

Murphy’s laws

2FYS 4220 / 9220 - 2011 - Lecture #9

”Whatever can go wrong will do so, at the worst possible
moment”

”If everything seems to be going well, you have
obviously overlooked something”

T.B. Skaali, Department of Physics, University of Oslo 3FYS 4220 / 9220 - 2011 - Lecture #9

Computer System Reliability and Nuclear War
http://www-ee.stanford.edu/~hellman/Breakthrough/book/chapters/borning.html

• On Tuesday, June 3, 1980, at 1:26 a.m., the display system at the command post of the
Strategic Air Command (SAC) near Omaha, Nebraska, indicated that two submarine-
launched ballistic missiles (SLBMs) were headed toward the United States. (1) Eighteen
seconds later, the system showed an increased number of SLBM launches. SAC personnel
called the North American Aerospace Defense Command (NORAD), who stated that they
had no indication of attack.

• After a brief period, the SAC screens cleared. But, shortly thereafter, the warning display at
SAC indicated that Soviet ICBMs had been launched toward the United States. Then the
display at the National Military Command Center in the Pentagon showed that SLBMs had
been launched. The SAC duty controller directed all alert crews to move to their B-52
bombers and to start their engines, so that the planes could take off quickly and not be
destroyed on the ground by a nuclear attack. Land-based missile crews were put on a
higher state of alert, and battle-control aircraft prepared for flight. In Hawaii, the airborne
command post of the Pacific Command took off, ready to pass messages to US warships if
necessary.

• Fortunately, there were a number of factors which made those involved in the assessment
doubt that an actual attack was underway. Three minutes and twelve seconds into the
alert, it was canceled. It was a false alert.

• NORAD left the system in the same configuration in the hope that the error would repeat
itself. The mistake recurred three days later, on June 6 at 3:38 p.m., with SAC again
receiving indications of an ICBM attack. Again, SAC crews were sent to their aircraft and
ordered to start their engines.

• The cause of these incidents was eventually traced to the failure of a single
integrated circuit chip in a computer which was part of a communication system. To
ensure that the communication system was working, it was constantly tested by
sending filler messages which had the same form as attack messages, but with a
zero filled in for the number of missiles detected. When the chip failed, the system
started filling in random numbers for the "missiles detected" field.

T.B. Skaali, Department of Physics, University of Oslo 4FYS 4220 / 9220 - 2011 - Lecture #9

”IT systems full of errors”

T.B. Skaali, Department of Physics, University of Oslo 5FYS 4220 / 9220 - 2011 - Lecture #9

The operators’ screens
went in blue so often
that it was called
”screen of death”

The programs often
hung such that the
system froze

T.B. Skaali, Department of Physics, University of Oslo 6FYS 4220 / 9220 - 2011 - Lecture #9

Reliability and fault tolerance

• Factors influencing the reliability of a computer
system, particularly critical for Real-Time /
embedded:
– Hardware level
– Software level
– System level

• Challenge:how can a system operate in the
presence of errors?
– How can one build systems with extreme reliability?

• Or more relevant: with sufficient reliability!

Some of the presentation has been borrowed (thanks!) from the book of (York University
computer science professors) Burns & Wellings, Ch. 5

T.B. Skaali, Department of Physics, University of Oslo

Chip and board failures

• Chip functional/logical faults
– How can one test a chip with million of transistor equivalents?
– Standard components like processor, memory and FPGA chips

are tested (well, up to a point) by the manufacturer
– However, many Real-Time / embedded systems are based on

”non-standard” Application Specific Integrated Circuits (ASICs)
• As an example, the CERN detector electronics contains many ASICs.

How can they be 100% tested? They can not, one just have to get
around the faults, but first one has to detect them

• Board failures
– Production issues: mounting (soldering, bounding)
– Cooling related problems
– Power problems, connectors

• Special cases:
– Radiation tolerant – radiation hard,
– Extreme environment: temperature, humidity etc

7FYS 4220 / 9220 - 2011 - Lecture #9

T.B. Skaali, Department of Physics, University of Oslo 8FYS 4220 / 9220 - 2011 - Lecture #9

Hardware related failures

• Failures in electronic systems can have many
reasons, and a systematic study is far outside the
scope of this course. Some examples:
– Intrinsic failures in a basic circuit (gate), for instance due to

radiation damage (the probability for this increases with altitude
since the radiation goes up!)

– Interconnection failures
– Connector and cable weaknesses
– Power problems
– Aging
– Sloppy design
– Plus all others …..

• Keep in mind: engineers are never wrong; they just
make bad assumptions!

T.B. Skaali, Department of Physics, University of Oslo

A case from a CERN experiment
• The picture to the left shows digitizer cards

for 7128 channels. The data is read out over
busses implemented as PCB strip lines.

• We had problems with corrupted data. The
left scope trace shows reflections and cross-
talk on the bus clock line, some spikes even
cross the reference level. The right scope
trace shows the improved clock signal with
better impedance matching.

9FYS 4220 / 9220 - 2011 - Lecture #9

buses

T.B. Skaali, Department of Physics, University of Oslo 10FYS 4220 / 9220 - 2011 - Lecture #9

The mythical Mean Time Between Failure (MTBF)
• MTBF gives an estimate of the expected lifetime of a

component
• Calculation of MTBF – methodology

– A prediction process thereby a numerical estimate is made of the ability,
with respect to failure, of a design to perform its intended function. Once
the failure rate is determined, MTBF is calculated as the inverse of the
failure rate

– MTBF = 1/(FR1 + FR2 + FR3 + …… + FRn) where FRi is the failure rate of
each component of the system

– The failure rate is dependent on the operating environment
– What you get is what you pay for! For instance, radiation tolerant and in

particular radiation hard components are much more expensive than off-
the-shelf stuff

– The baseline is that any component will eventually fail!

• Web MTBF calculations: http://www.sqconline.com/reliability

© Burns and Welling, 2001

Reliability and Fault Tolerance

Goals
– To understand (some of) the factors influencing the reliability of

a hardware system
– To understand (some of) the factors which affect the reliability

of a system and how software design faults can be tolerated.
Topics

– Reliability, failure and faults
– Failure modes
– Fault prevention and fault tolerance
– N-Version programming
– Software dynamic redundancy
– The recovery block approach to software fault tolerance
– A comparison between N-version programming and recovery

blocks
– Dynamic redundancy and exceptions
– Safety, reliability and dependability

© Burns and Welling, 2001

Scope

Four sources of faults which can result in system failure:

 Inadequate specification
 Design errors in software
 Processor or component failure
 Interference on the communication subsystem
 In this chapter (ref B&W), some of the general design

techniques that can be used to improve the overall
reliability of embedded computer systems are considered.

 Exception handling, intimately connected with fault
handling

© Burns and Welling, 2001

Reliability, Failure and Faults
 The reliability of a system is “a measure of the success

with which it conforms to some authoritative
specification of its behaviour”. (Definition from 1978!)

 When the behaviour of a system deviates from that
which is specified for it, this is called a failure

 Failures result from unexpected problems internal to the
system which eventually manifest themselves in the
system's external behaviour

 These problems are called errors and their mechanical
or algorithmic cause are termed faults

 Systems are composed of components which are
themselves systems: hence the chain

failure fault error failure fault

© Burns and Welling, 2001

Fault Types

 A transient fault starts at a particular time, remains in
the system for some period and then disappears (well..?)
– E.g. hardware components which have an adverse reaction to

radioactivity (… when Moore meets Einstein…)

– Many faults in communication systems are transient

 Permanent faults remain in the system until they are
repaired; e.g., a broken wire or a software design error.

 Intermittent faults are transient faults that occur from
time to time
– E.g. a hardware component that is heat sensitive, it works for a

time, stops working, cools down and then starts to work again

© Burns and Welling, 2001

Failure Modes

Failure mode

Value domain Timing domain Arbitrary
(Fail uncontrolled)

Constraint
error

Value
error

Early Omission Late

Fail silent Fail stop Fail controlled

© Burns and Welling, 2001

Approaches to Achieving Reliable Systems

 Fault prevention attempts to eliminate any possibility of
faults creeping into a system before it goes operational

 Fault tolerance enables a system to continue
functioning even in the presence of faults

 Both approaches attempt to produces systems which
have well-defined failure modes

© Burns and Welling, 2001

Fault Prevention

 Two stages: fault avoidance and fault removal
 Fault avoidance attempts to limit the introduction of

faults during system construction by:
– use of the most reliable components within the given cost and

performance constraints
– use of thoroughly-refined techniques for interconnection of

components and assembly of subsystems
– packaging the hardware to screen out expected forms of

interference.
– rigorous, if not formal, specification of requirements
– use of proven design methodologies
– use of languages with facilities for data abstraction and

modularity
– use of software engineering environments to help manipulate

software components and thereby manage complexity

© Burns and Welling, 2001

Fault Removal
 In spite of fault avoidance, design errors in both hardware

and software components will exist
 Fault removal: procedures for finding and removing the

causes of errors; e.g. design reviews, program
verification, code inspections and system testing

 System testing can never be exhaustive and remove all
potential faults
– Remember: a test can only be used to show the presence of

faults, not their absence!
– It is sometimes impossible to test under realistic conditions
– Most tests are done with the system in simulation mode and it is

difficult to guarantee that the simulation is accurate
– Errors that have been introduced at the requirements stage of the

system's development may not manifest themselves until the
system goes operational

© Burns and Welling, 2001

Failure of Fault Prevention Approach

 In spite of all the testing and verification techniques,
hardware components will fail; the fault prevention
approach will therefore be unsuccessful when
– either the frequency or duration of repair times are

unacceptable, or
– the system is inaccessible for maintenance and repair activities

 An extreme example of the latter is the Mars Pathfinder
and the Mars Rovers Spirit and Opportunity,
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

 Alternative is Fault Tolerance

© Burns and Welling, 2001

Levels of Fault Tolerance

 Full Fault Tolerance — the system continues to operate in
the presence of faults, albeit for a limited period, with no
significant loss of functionality or performance

 Graceful Degradation (fail soft) — the system continues
to operate in the presence of errors, accepting a partial
degradation of functionality or performance during recovery
or repair

 Fail Safe — the system maintains its integrity while
accepting a temporary halt in its operation

 The level of fault tolerance required will depend on the
application

 Most safety critical systems require full fault tolerance,
however in practice many settle for graceful degradation

© Burns and Welling, 2001

Redundancy

 All fault-tolerant techniques rely on extra elements
introduced into the system to detect & recover from faults

 Components are redundant as they are not required in a
perfect system

 Often called protective redundancy
 Aim: minimise redundancy while maximising reliability,

subject to the cost and size constraints of the system
 Warning: the added components inevitably increase the

complexity of the overall system
 This itself can lead to less reliable systems
 E.g., first launch of the space shuttle
 It is advisable to separate out the fault-tolerant

components from the rest of the system

T.B. Skaali, Department of Physics, University of Oslo 22FYS 4220 / 9220 - 2011 - Lecture #9

SOME SOFTWARE ISSUES

© Burns and Welling, 2001

Software Fault Tolerance

 Used for detecting design errors
 Static — N-Version programming
 Dynamic

– Detection and Recovery
– Recovery blocks: backward error recovery
– Exceptions: forward error recovery

© Burns and Welling, 2001

N-Version Programming

 Design diversity
 The independent generation of N (N > 2) functionally

equivalent programs from the same initial specification
 No interactions between groups
 The programs execute concurrently with the same

inputs and their results are compared by a driver
process

 The results (VOTES) should be identical, if different the
consensus result, assuming there is one, is taken to be
correct

© Burns and Welling, 2001

N-Version Programming

Version 2Version 1 Version 3

Driver
vote

status

votevote

status
status

© Burns and Welling, 2001

Vote Comparison

 To what extent can votes be compared?
 Text or integer arithmetic will produce identical results
 Real numbers => different values
 Need inexact voting techniques

© Burns and Welling, 2001

Consistent Comparison Problem

Temp3

> Tth
no

Pressure3

> Pth

Temp1

> Tth

yes
Pressure1

> Pth

yes

V1

Temp2

> Tth

yes
Pressure2

no
> Pth

V2 V3

This example illustrates 3-
version V1, V2, V3 (triplicate)
software for a process control
system which monitors
temperature and pressure
sensors and then takes
appropriate actions according to
their values to ensure the
integrity of the system. The 3
systems vote on the outcome.
As a result of finite-precision
arithmetic, each version will
calculate slightly different
values. The consistent
comparison problem occurs
when both readings are around
their threshold values.

© Burns and Welling, 2001

N-version programming depends on:

 Initial specification — The majority of software faults stem
from inadequate specification? A specification error will
manifest itself in all N versions of the implementation

 Independence of effort — Experiments produce conflicting
results. Where part of a specification is complex, this leads to a
lack of understanding of the requirements. If these
requirements also refer to rarely occurring input data, common
design errors may not be caught during system testing

 Adequate budget — The predominant cost is software. A 3-
version system will (at least) triple the budget requirement and
cause problems of maintenance. Would a more reliable system
be produced if the resources potentially available for
constructing an N-versions were instead used to produce a
single version?

© Burns and Welling, 2001

Software Dynamic Redundancy

Four phases:
 error detection — no fault tolerance scheme can be utilised

until the associated error is detected
 damage confinement and assessment — to what extent

has the system been corrupted? The delay between a fault
occurring and the detection of the error means erroneous
information could have spread throughout the system

 error recovery — techniques should aim to transform the
corrupted system into a state from which it can continue its
normal operation (perhaps with degraded functionality)

 fault treatment and continued service — an error is a
symptom of a fault; although damage repaired, the fault
may still exist

© Burns and Welling, 2001

Error Detection

 Environmental detection
– hardware — e.g. illegal instruction
– O.S/RTS — null pointer

 Application detection
– Replication checks
– Timing checks
– Reversal checks
– Coding checks
– Reasonableness checks
– Structural checks
– Dynamic reasonableness check

© Burns and Welling, 2001

Damage Confinement and Assessment

 Damage assessment is closely related to damage
confinement techniques used

 Damage confinement is concerned with structuring the
system so as to minimise the damage caused by a
faulty component (also known as firewalling)

 Modular decomposition provides static damage
confinement; allows data to flow through well-define
pathways

 Atomic actions provides dynamic damage confinement;
they are used to move the system from one consistent
state to another

© Burns and Welling, 2001

Error Recovery

 Probably the most important phase of any fault-
tolerance technique

 Two approaches: forward and backward
 Forward error recovery continues from an erroneous

state by making selective corrections to the system state
 This includes making safe the controlled environment

which may be hazardous or damaged because of the
failure

 It is system specific and depends on accurate
predictions of the location and cause of errors (i.e,
damage assessment)

 Examples: redundant pointers in data structures and the
use of self-correcting codes such as Hamming Codes

© Burns and Welling, 2001

Backward Error Recovery (BER)

 BER relies on restoring the system to a previous safe state
and executing an alternative section of the program

 This has the same functionality but uses a different
algorithm (c.f. N-Version Programming) and therefore no
fault

 The point to which a process is restored is called a
recovery point and the act of establishing it is termed
checkpointing (saving appropriate system state)

 Advantage: the erroneous state is cleared and it does not
rely on finding the location or cause of the fault

 BER can, therefore, be used to recover from unanticipated
faults including design errors

 Disadvantage: it cannot undo errors in the environment!

© Burns and Welling, 2001

The Domino Effect
 With concurrent processes that interact with each other,

BackwardErrorRecovery is more complex. Consider:

R22

R21

R13

R12

R11

IPC4

IPC3

IPC2

IPC1

Ex
ec

ut
io

n
tim

e

Te

P1 P2

If P1 detects an error at Te,
then simply roll back to
recovery point R13.

However, consider the case
where P2 detects an error at
Te. If P2 is rolled back to
R22, then it must undo the
communication IPC4 with
P1, which requires P1 to roll
back to R12. But then P2
must be rolled back to R21,
etc etc.

© Burns and Welling, 2001

Fault Treatment and Continued Service

 Error Recovery returned the system to an error-free state;
however, the error may recur; the final phase of Fault Tolerance
is to eradicate the fault from the system

 The automatic treatment of faults is difficult and system specific
 Some systems assume all faults are transient; others that error

recovery techniques can cope with recurring faults
 Fault treatment can be divided into 2 stages: fault location and

system repair
 Error detection techniques can help to trace the fault to a

component. For, hardware the component can be replaced
 A software fault can be removed in a new version of the code
 In non-stop applications it will be necessary to modify the

program while it is executing!

© Burns and Welling, 2001

The Recovery Block approach to Fault Tolerance

 Recovery blocks: language support for BER
– The Recovery block concepts was introduced some 40 years ago. For more info

search the web

 At the entrance to a block is an automatic recovery point and at the
exit an acceptance test

 The acceptance test is used to test that the system is in an
acceptable state after the block’s execution (primary module)

 If the acceptance test fails, the program is restored to the recovery
point at the beginning of the block and an alternative module is
executed

 If the alternative module also fails the acceptance test, the program is
restored to the recovery point and yet another module is executed,
and so on

 If all modules fail then the block fails and recovery must take place at
a higher level

© Burns and Welling, 2001

Recovery Block Syntax

 Recovery blocks can be nested

 If all alternatives in a nested recovery block fail the acceptance
test, the outer level recovery point will be restored and an
alternative module to that block executed

ensure <acceptance test>
by

<primary module>
else by

<alternative module>
else by

<alternative module>
...

else by
<alternative module>

else error

© Burns and Welling, 2001

Recovery Block Mechanism

Establish
Recovery

Point

Any
Alternatives

Left?

Evaluate
Acceptance

Test

Restore
Recovery

Point

Execute
Next

Alternative

Discard
Recovery

Point

Fail Recovery Block

Yes

No

Pass

Fail

© Burns and Welling, 2001

The Acceptance Test
 The acceptance test provides the error detection

mechanism which enables the redundancy in the system
to be exploited

 The design of the acceptance test is crucial to the
efficacy of the RB scheme

 There is a trade-off between providing comprehensive
acceptance tests and keeping overhead to a minimum,
so that fault-free execution is not affected

 Note that the term used is acceptance not correctness;
this allows a component to provide a degraded service

 All the previously discussed error detection techniques
discussed can be used to form the acceptance tests

 However, care must be taken as a faulty acceptance test
may lead to residual errors going undetected

© Burns and Welling, 2001

N-Version Programming vs Recovery Blocks

 Static (NV) versus dynamic redundancy (RB)
 Design overheads — both require alternative

algorithms, NV requires driver, RB requires acceptance
test

 Runtime overheads — NV requires N * resources, RB
requires establishing recovery points

 Diversity of design — both susceptible to errors in
requirements

 Error detection — vote comparison (NV) versus
acceptance test(RB)

 Atomicity — NV vote before it outputs to the
environment, RB must be structure to only output
following the passing of an acceptance test

© Burns and Welling, 2001

Dynamic Redundancy and Exceptions

 An exception can be defined as the occurrence of an error
 Bringing an exception to the attention of the invoker of the

operation which caused the exception, is called raising (or
signally or throwing) the exception

 The invoker's response is called handling (or catching) the
exception

 Exception handling is a forward error recovery
mechanism, as there is no roll back to a previous state;
instead control is passed to the handler so that recovery
procedures can be initiated

 However, the exception handling facility can be used to
provide backward error recovery

© Burns and Welling, 2001

Exceptions (incl. signals)

Exception handling can be used to:

 cope with abnormal conditions arising in the
environment

 enable program design faults to be tolerated
 provide a general-purpose error-detection and recovery

facility

T.B. Skaali, Department of Physics, University of Oslo

BUS ERROR
• Bus errors are usually signaled with the SIGBUS signal, but

SIGBUS can also be caused by any general device fault that
the computer detects. A bus error rarely means that
the computer hardware is physically broken—it is normally
caused by a bug in a source code. There are two main causes
of bus errors:
– non-existent address. The CPU is instructed by software to read

or write a specific physical memory address. Accordingly, the CPU
sets this physical address on its address bus and requests all
other hardware connected to the CPU to respond with the results,
if they answer for this specific address. If no other hardware
responds, the CPU raises an exception, stating that the requested
physical address is unrecognized by the whole computer system.
Note that this only covers physical memory addresses. Trying to
access an undefined virtual memory address is generally
considered to be a segmentation fault rather than a bus error,
though if the MMU is separate, the processor can't tell the
difference.

43FYS 4220 / 9220 - 2011 - Lecture #9

T.B. Skaali, Department of Physics, University of Oslo

BUS ERROR (cont)

• unaligned access
– Most CPUs are byte-addressable, where each unique memory

address refers to an 8-bit byte. Most CPUs can access individual
bytes from each memory address, but they generally cannot
access larger units (16 bits, 32 bits, 64 bits and so on) without
these units being "aligned" to a specific boundary. For example, if
multi-byte accesses must be 16 bit-aligned, addresses 0, 2, 4, and
so on would be considered aligned and therefore accessible, while
addresses 1, 3, 5, and so on would be considered unaligned.
Similarly, if multi-byte accesses must be 32-bit aligned, addresses
0, 4, 8, 12, and so on would be considered aligned and therefore
accessible, and all addresses in between would be considered
unaligned. Attempting to access a unit larger than a byte at an
unaligned address can cause a bus error.

44FYS 4220 / 9220 - 2011 - Lecture #9

T.B. Skaali, Department of Physics, University of Oslo

unaligned memory access C code
from Wikipedia (not VxWorks compliant!)

45FYS 4220 / 9220 - 2011 - Lecture #9

int main(int argc, char **argv)
{

int *iptr;
char *cptr;

#if defined(__GNUC__)
if defined(__i386__)

/* Enable Alignment Checking on x86 */
__asm__("pushf\norl $0x40000,(%esp)\npopf");

elif defined(__x86_64__)
/* Enable Alignment Checking on x86_64 */
__asm__("pushf\norl $0x40000,(%rsp)\npopf");

endif
#endif

/* malloc() always provides aligned memory */
cptr = malloc(sizeof(int) + 1);

/* Increment the pointer by one, making it misaligned */
iptr = (int *) ++cptr;

/* Dereference it as an int pointer, causing an unaligned access */
*iptr = 42;

return 0;
}

T.B. Skaali, Department of Physics, University of Oslo

SEGMENTATION/PAGE FAULT
• A segmentation fault occurs when a program attempts to

access a memory location that it is not allowed to access, or
attempts to access a memory location in a way that is not
allowed (for example, attempting to write to a read-
only location, or to overwrite part of the operating system).

• Common causes:
– On Unix-like operating systems, a signal called SIGSEGV is sent to a

process that accesses an invalid memory address. On Microsoft Windows,
a process that accesses invalid memory receives the
STATUS_ACCESS_VIOLATION exception.

• attempting to execute a program that does not compile correctly. Note that most
compilers will not output a binary given a compile-time error.

• a buffer overflow.
• using uninitialized pointers.
• dereferencing NULL pointers.
• attempting to access memory the program does not own.
• attempting to alter memory the program does not own (storage violation).
• exceeding the allowable stack size (possibly due to runaway recursion or an

infinite loop)

46FYS 4220 / 9220 - 2011 - Lecture #9

© Burns and Welling, 2001

Summary
 Reliability: a measure of the success with which the

system conforms to some authoritative specification of its
behaviour

 When the behaviour of a system deviates from that which
is specified for it, this is called a failure

 Failures result from faults
 Faults can be accidentally or intentionally introduced into a

system
 They can be transient, permanent or intermittent
 Fault prevention consists of fault avoidance and fault

removal
 Fault tolerance involves the introduction of redundant

components into a system so that faults can be detected
and tolerated

© Burns and Welling, 2001

Summary

 N-version programming: the independent generation of N
(where N >= 2) functionally equivalent programs from the
same initial specification

 Based on the assumptions that a program can be
completely, consistently and unambiguously specified, and
that programs which have been developed independently
will fail independently

 Dynamic redundancy: error detection, damage confinement
and assessment, error recovery, and fault treatment and
continued service

 Atomic actions to aid damage confinement

© Burns and Welling, 2001

Summary
 With backward error recovery, it is necessary for

communicating processes to reach consistent recovery
points to avoid the domino effect

 For sequential systems, the recovery block is an
appropriate language concept for BER

 Although forward error recovery is system specific,
exception handling has been identified as an
appropriate framework for its implementation

 The concept of an ideal fault tolerant component was
introduced which used exceptions

 The notions of software safety and dependability have
been introduced

”The five nines” (99.999% uptime)

