12 Oct 2011 /TBS

FYS4220 /9220

RT-lab no 2 - 2011

SIGNALS

1 The VxWorks signal IPC facility

VxWorks provides a software signal facility. Signals asynchronously alter the control
flow of a task or process. Signals are the means by which processes/tasks are notified
of the occurrence of significant events in the system, examples are hardware
exceptions, POSIX Real Time signals, signals to kill a process, for notifying that a
message queue has data, and so on. Each signal has a unique number, value 0 is
reserved for use as the null signal. Signals can be disabled or individually enabled.

To catch and process a signal a task/process must have installed a signal handler. For
VxWorks 6.2 (under Workbench) there is some difference whether the task is a kernel
task or a RTP (Real Time Process). Note that the lab exercise tasks are built as kernel
modules.

For more on VVxWorks signals see the lecture, Workbench Help or documentation at
the lab.

1.1 POSIX Queued Signals

Signals are handled differently in the kernel and in a real-time process. In the kernel
the target of a signal is always a task.

The POSIX sigqueue() family of routines provides an alternative to the (UNIX) kill()
family for sending signals. The important differences between the two are:

- sigqueue() includes an application- specified value that is sent as part of the
signal, one can use this value to supply whatever is useful. This value is of
type sigval, the signal handler finds it in the si_value field of one of its
arguments: a structure siginfo_t. The use of this feature is implemented in the
exercise code.

- sigqueue() enables the queuing of multiple signals. The kill() routine, by
contrast, delivers only a single signal even if multiple signals arrive before the
handler runs, in other words, signals may be lost.

Note however that as with all resources there is a limitation on how many signals can
be stored in the sigqueue() buffer. If a task sends a burst of signals this limit can
easily be found. This system variable can however be changed, it is left as a challenge
to the students to find out more about the POSIX queued signals.

1.2 Signal handlers

Most signals are delivered asynchronously to the execution of a program. Therefore
programs must be written to account for the unexpected occurrence of signals. Unlike
Interrupt Service Routines (ISRs), a signal handler executes in the context of the
interrupted task. Note that the task’s signal handler is executed whatever the state of
the task is, active or pended!

In general, signal handlers should be handled as ISR’s, no routine should be called
that may cause blocking. Table 3.18 of the VxWorks Application Programmer’s
Guide 6.2 lists those few routine that is safe. The most important ones are logMsg(),
msgQSend, semGive() except when mutual-exclusion semaphore, semFlush(), a
number of taskLib routines, tickSet() and tickGet(). semTake() is definitely not
safe!! Anyway, it is a good idea to use logMsg() in all VxWorks programs since the
task is identified in the output.

1.3 Communication between signal handler and task

Due to the restrictions on system calls in a handler, see sect. 1.2, actions to be taken
after a signal must in general be carried out in the task. Also, like in an ISR, the time
spent in a handler should be as short as possible.

But how can the signal handler notify its owner (task) that a signal has arrived?
Possible methods are:

- The handler can store the signal information in global variables and the task
can poll on a flag that indicates when a signal has arrived. For several reasons
this is a bad solution: 1) access of shared data requires mutual exclusion and
semTake() is not safe in a handler, and 2) polling wastes CPU time.

- The task can wait on a semaphore on which the handler execute a semGive()
after a signal. However, in order that the task can fetch the signal information
one is back to square 1) above.

- POSIX/ANSI has the (strange) setymp / longjmp (jmp_buf env) facility,
see lecture. The structure jmp_buf contains some extra elements that can (I
think) be used for information transfer from handler to the task.

typedef struct _jmp_buf

{
REG_SET reg;

int excCnt;
int extra[3];
}imp_buf[1];

- The handler can send the information to the task over a message queue, as the
msgQSend() is handler safe, see sect. 1.2. This is the method to be used in
this exercise.

1.4 Signal system calls

The use of these functions is well illustrated in the source code. It is referred to the
VxWorks documentation for additional information.

1.4.1 Signal functions arguments

The follow description of the siginfo_t structure is also commented into the RTlab_2
skeleton source code.

/* The signal handler receives the value of the signal that has triggered the handler.
* Additional, sigqueue()can supply an application specified value to the handler
* of type sigval (defined in "signal.h"); the signal handler finds it in the
* si_value field of one of its arguments, a structure siginfo_t
*
* The data structure is as follows:
typedef struct siginfo

{
int si_signo;
int si_code;
union sigval si_value;
} siginfo_t;

* sigval is defined in "sigeventCommon.h

union sigval
{
int sival_int;
void *sival_ptr;
h

*/

How the value stored in sival_int is accessed see the source code.

1.4.1.1 C unions
For those of you (like me) who are not very familiar with C unions here is a practical
introduction that one can also run as is under VxWorks.

/* A union is like a structure, except that each element shares the same memory.
Thus in this example, the coords and about members overlap.

Note that the setting of about[2] to 'X' CORRUPTS the float in this demonstration.

In a practical use, a variable such as un_type (provided but not used in this example) would be set up to
indicate which particular use is being made of the union */

typedef union {
float coords[3];

char about[20];
} assocdata;
typedef struct {
char *descript;
int un_type;
assocdata alsostuff;
} leaf;
int main() {
leaf oak[3];
inti;

printf ("Hello World\n");

for (i=0; i<3; i++) {
oak[i].descript = "A Greeting";
oak[i].un_type = 1;

oakf[i].alsostuff.coords[0] = 3.14;
}
oak[2].alsostuff.about[2] = 'X";

for (i=0; i<3; i++) {
printf("%s\n",o0ak]i].descript);
printf("%5.2f\n",0ak[i].alsostuff.coords[0]);

}
return OK;

}

/* Sample of output from this program
Hello World

A Greeting

3.14

A Greeting

3.14

A Greeting

3.39

*/

OK, now you know how a union works.

1.5 Waking up a task by a signal

If a task is PENDED (waiting for a resource) when a signal is sent to it, two things
will take place:

- The signal handler will be executed, and
- The task is immediately taken out of the PENDED state, and will continue to
execute once it gets access to the CPU.

The second point is important, because it implies that if the task is for instance
waiting in mq_receive() for a message or in sesmTake() for a semaphore, an
immediate return from the system call with errno = EINTR will take place without
receiving neither the message nor getting the semaphore! So, if the task/process
continues in good faith without testing the return status then there is trouble waiting
for it.

2 RTlab-2.c

The source code which is the basis for the exercise is stored under ...\FYS4220\src\ .
It can also be downloaded from the FYS4220 home page.

Although the code can be compiled without errors, but with a fair number of
warnings, the program system is not complete. How to complete it (in one way or
another) and thereby getting the exercise approved is defined in sect. 2.2. As for the
ROBOT exercise the number of lines of code to be written is few.

2.1 Structure of RTlab-2.c

The source code should be a pleasure to read, but here is a quick overview to guide
the eyes. The overall structure mimics a general measurement system, with user
control and monitoring, measuring tasks, and Alarm handling.

The start address is taskControl without parameters. It is recommended that
task CONTROL is started from a Target shell such that the printout is not mixed up
with the output from logMsg() which is routed to the VxSim terminal.

The system is built with five VxWorks tasks:

- The interactive command interpreter task CONTROL(), which spawns the
other tasks;

- Alarm_task() which install its signal handler SignalHandler() and creates a
message queue over which it shall receive messages from the handler;

- taskTEMPERATURE() , taskPRESSURE() and taskPOSITION ().
Each of them reads “data” from an array with a randomized index, and tests
the value against an “error” limit. If the limit is exceeded the tasks sends a
signal to Alarm_task() that also includes the “data” value. In order to make
the error rate more unpredictable the three tasks “reads” data at random
intervals from O (zero) to 99 clock ticks, one tick is 16.7 ms. By decreasing the
taskDelay () random interval one can also test the robustness of the system.

The code includes a number of global counters that can be used to collect statistics.

2.2 Whatto do

1. When triggered, SignalHandler() shall send the signal code and sigval (see
sect. 1.4.1) parameter to Alarm_task() over a message queue. Implement
status test after all message queue system calls. The code for this must be
added to the SignalHandler(') and Alarm_task() skeletons.

2. Demonstrate that the number of sent and received signals is identical.

3. Try to stress the system, this can for instance be done by sending a burst of
SIGRT1/SIGRT?2 signals from task CONTROL() or changing the
taskDelay() period interval in the three measuring tasks..

2.2.1 Some “help me please” info

An example of handling by Alarm_task() of the received information is already
implemented in the code.

According to the documentation only the VxWorks msqQSend() is permitted from a
signal handler. The POSIX equivalent is mq_send(). (Why this difference between
msgQSend() and mq_send() I really don’t know, because both can cause blocking
if the non-blocking option has not been set.) Whatever, to profit from the message
queue code in ROBOT one can use the POSIX calls. Blocking in the signal handler
can be avoided by first testing for available buffers:

if (msgQNumMsgs ((MSG_Q ID)MQ descriptor) < MQ MSGMX-1)
See also sect 1.5

As for the ROBOT exercise, a significant part of the job is to study the code.

2.2.2 mgq_send() and mq_receive() Reference pages

mgq_send()

NAME
maq_send() - send a message to a massage queus (POSI)

1 svmopsis

int mg_send
(

mad_t mades, /% message queus descnptor -
oc_mstchu-pﬁsi.m ## message to send =
™

size_t 5. . #% size of message. in bytes =~
l)lnsianad mzgPrio ## priority of message =
DESCRIPTION

This routine adds the message pMsg to the message queue mgdes. The msplLen parameter specifies the length of the message in bytes pointed 1o by phisg.

The value of phisg must be less than or equal to the mq_msgsize aftribute of the message queve, or mg_send() will fail.

It the message queue is not full, ma_send() will behave as if the message is inserted into the message queue at the position indicated by the

argument. A message with a higher numeric value for msgPrio is insered before messages with a lower value. The value of msgPrio must be less than

MO_PRIO_MAX.

Ithe specified message queue is full and O_NONBLOCK is not setin the message queue's, mg_send|) will block until space becomes available 1o queue the

message, or until it is interrupled by a signal. if the message queue is full and O_NONBLOCK is setin the message queue's descriptions associated with

mades, the message is not queved, and mq_send(| returns EAGAIN error. =

RETURNS
0 (OK), otherwise -1 (ERROR)
ERRNO
EAGAIN
O_NONBLOCK was setin the g& queus with mades, and the specified message queue is full
EBADF
The modes nota quaue open for for writing
EMSGSIZE
The specified message length, msgLen, exceeds the message size aftibute of the message queue
EINVAL
The value of magPrio is greater than or equal to MQ_PRIO_MAX the phsg pointer is invalid
EINTR
The request has been interrupted by a signal
SEE ALSO
moPxLib. mg_receivel)
h
T T |
' mag_receive()
NAME
maq_receive() - receive 3 message from a message queue (POSIX)
il SYNOPSIS
| ssize_t mg receive
mngd_t ngdes, /% message queue descriptor s/
char = plsg, <= buffer to receive message =
size_t Len., ##% size of buifer. in bytes &/

nSg
\}aaslgmd # pMsgPrio -« if not NULL. priority of message =~

DESCRIPTION
This routing receives the oldest of the highest pri from the queue ified by mgdes. Il the size of the buffer in byles, specified by the
magLen argument, is lgss than the mq_msgsize atiribule of the message queus, ma_receivel) will fall and return an ermor. Otherwise, the selected message
Is removed from the queue and copied to phisg
If phisgPrio is not NULL, the priority of the selected message will be stored in pMsgPrio. -

I the message queue is empty and O_NONBLOCK is not setin the message queus’s description, mg_receive() will block until a message is added to the
message queue, or until it is interrupled by a signal. if more than one task is wailing 10 receive a message when a message amives at an emply queue, the task
of highest priority that has been wamnn the longest will be selected to receive the . ifthe queue is empty and O_NONBLOCK is set
inthe queue’s is from the queue. and ma_receive]) retums an efror

| RETURNS

The length of the selected message in bytes, otherwise -1 (ERROR).

| ERRNO

EAGAIN
O_NONBLOCK was setin the g8 quaus with mgdes, and the specified message queue is emply.
EBADF
The mgoes is not a valid queue open for for reading.
EMSGSIZE
The specified message buffer size. magLen, is less than the message size attribute of the message queue.
EINVAL
The pMsg pointer is invalid.

EINTR.
Signal received while Blocking on the message queue.

| SEE ALSO

maPxLib. ma_send()

2.3 Output from a perfect system

See Figure 1 and Figure 2

e+ vxsimO@skaali-pc - Host Shell
—> taskCONTROL

Bienvenue, il est Oct 11 2811

[Command menu
fire SIGRT1 and SIGRT2
print statistics
exit

command no and RETURN:1

taskCTRL: fire signal 23
taskCTRL: fire signal 24

ommand menu
: fire SIGRT1 and SIGRT2
print statistics
exit

command no and RETURN:2

wx® gsignal statistics at tick 97916
ignalHandler trigger count
SignalHandler mg_send(> buffer full error
taskCONTROL SIGRT1 sigqueue{) error
taskCONTROL SIGRI2 sigqueue{) error
Alarm_task SIGRT1 signals received
Nlarm_task SIGRT2 signals received
Alarm_task SIGRT_TEMP signals received
Alarm_task SIGRT_PRESSURE signals received
Alarm_task SIGRT_POSITION signals received

“0

NN

Command menu
: fire SIGRT1 and SIGRT2
2 : print statistics
3 : exit
ype command no and RETURN:3

3
Alarm task terminated

wx# signal statistics at tick 98782
SignalHandler trigger count

SignalHandler mg_send(> buffer full error
taskCONTROL SIGRT1 siggqueue{) error
taskCONTROL SIGRT2 sigqueue{) error
Nlarm_task SIGRT1 signals received
Alarm_task SIGRT2 signals received

'lavm:t sk SIGRT_PRESSURE signals received
Alarm_task SIGRT_POSITION signals received

Figure 1 Shell output from taskCONTROL()

VxSim0

—-> 011700478 (tAlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(thlarm):
(thlarm):
(tAlarm):
(tAlarm):
(thlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(tAlarm):
(tAlarm):

0x11700d78

0x11700d78
0x11700d78
0x11700d78
0x11700d78
0x11700d78
0x11700d78
0x11700d78
0x11700d78

ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
Alarm

ALARM

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

at clock tick 97240:
97248:

clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock

tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

97258:
97313:
97341:
97407
97428:
97473:
97494 :
97511:
97540:
975568
97672:
97728:
97751:
97821:
97901 :
97975:
97987
98033
98057:
98075:
98095:
98211:
98351:
98380:
98413:
98419:
98461 :
98487:
98491 :
98511:
98559:
98571 :
98594 :
98633:
98634
98648
98652:
98659:
98667 :
task terminated

position =
pressure = 91
position -6
position -3
pressure = 95
temperature =
pressure = 95
temperature =
pressure = 94
position = -1
pressure = 91
temperature
temperature
temperature
position = -
temperature
temperature
temperature
position = -2
temperature =
pressure = 91

LI = I I)

position = -6
temperature =
pressure = 91

temperature =
pressure = 92

temperature =
position = -1
pressure = 95
temperature =
pressure = 91
position = -2
position = -1
pressure = 95
position = -3
pressure = 95
position = -1
temperature =
position = -2
position = -2
position = -2

64
68

64
52
52
77
68

68
64
77

68

77

Figure 2 Terminal output from Alarm_task()

