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The answer is that the routine selects the first Slave Image, starting from no. 0, which 
matches the VMEbus AM code! Therefore one must configure a PCI Slave Image if 
none of the default settings do not match. From the printout in RTlab-3 one observes 
that PCI Slave Images 0, 1 and 2 are set up at boot time with data width D32 and AM 
(Address Modifier) code 2d, 3d and 0d, respectively. 

3 RTlab-3.c 
 
The source code is written for a module (TSVME) which is an interface for the HP-IB 
instrumentation bus. However, what is relevant for this exercise is that the module 
contains two memory blocks, a ROM and a RAM.  
 
The base address bits 23-16 is set up by switches to 0xF00000. 
 
The code should be self-explanatory. The module is accessed by A24 and D8. 
 
Disclaimer: do not use this source; download it from the FYS4220 web. 
 
 
/* RTlab-3.c  - FYS4220 2011 */ 
/* B. Skaali copyright */ 
 
#define VXWORKS 
#define M5000 
 
#include <vxworks.h> 
#include <taskLib.h> 
#include <pci.h> 
#include <sysLib.h> 
#include <MidasPciLib.h> 
#include <pciConfigLib.h> 
#include <uniLib.h> 
#include <sysVme.h> 
#include <vme.h> 
#include <uniDmaLib.h> 
#include "stdio.h" 
 
void uniImageShow(); 
 
/* Pci slave image 1 default mapping */ 
UINT32  pciBase1d = 0xD1000000, 
  vmeBase1d = 0x00000000, 
  size1d =    0x01000000, 
  pciAddrSpace1d = UNI_PCI_MEMORY_SPACE, 
  vmeAmCode1d = VME_AM_STD_SUP_DATA, 
  vmeDataWidth1d = UNI_VMEBUS_DATAWIDTH_32; 
BOOL postedWrites1d = TRUE; 
 
typedef struct VME_PCISLAVE_INFO { 
  UINT        pci_base_adr; 
  UINT        vme_base_adr; 
  UINT        vme_size; 
  UINT        pci_addr_space; 
  UINT        vme_am_code; 
  UINT        vme_data_width; 
  BOOL        posted_writes; 
} VME_PCISLAVE_INFO; 
 
 
/* some handy routines */ 
UINT32 swapendian (UINT32 val) 
{ 
 return (((0xff000000 & val)>>24) + ((0x00ff0000 & val)>>8) 
                                  + ((0x0000ff00 & val)<<8) 
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    + ((0x000000ff & val)<<24)); 
} 
 
UINT32 bitfield (UINT32 val, UINT32 mask, int shift) 
{ 
 return ((swapendian(val) & mask) >> shift); 
} 
 
/* PciSlave stuff */ 
 
STATUS PciSlaveImage1Set( VME_PCISLAVE_INFO   *info) 
{ 
 int image = 1; 
 if (uniPciSlaveImageSet (image, 

   info->pci_base_adr, 
   info->vme_base_adr, 

                                    info->vme_size, 
                                    info->pci_addr_space, 
                                    info->vme_am_code, 
                                    info->vme_data_width, 
                                    info->posted_writes) 
                                    == ERROR) return ERROR;  
 return OK; 
} 
 
STATUS PciSlaveImage1Default() 
{ 
 int image = 1; 
 if (uniPciSlaveImageSet (image, pciBase1d, vmeBase1d, size1d, pciAddrSpace1d,  
   vmeAmCode1d, vmeDataWidth1d, postedWrites1d) == ERROR) return ERROR;  
 return OK; 
} 
 
/* TSVME module base addresses for RAM, ROM and jumper setting */ 
#define TSVME_RAM 0x8000; 
#define TSVME_ROM 0xC000; 
#define TSVME_BADR 0x00F00000; 
 
UINT32 TSVMEadroffRAM = TSVME_RAM; 
UINT32  TSVMEadroffROM = TSVME_ROM; 
 
STATUS tsvme() 
{ 
 uint32_t vmePtr;      
 uint32_t vmeAdr; 
 int   off; 
 
/* set up PCI Slave image for the TSVME module */ 
 VME_PCISLAVE_INFO pci_slave_image; 
 VME_PCISLAVE_INFO *pinfo = &pci_slave_image; 
  
 pci_slave_image.pci_base_adr =  0xD1000000; 
 pci_slave_image.vme_base_adr =  0x00000000; 
 pci_slave_image.vme_size =      0x01000000; 
 pci_slave_image.pci_addr_space =  UNI_PCI_MEMORY_SPACE; 
 pci_slave_image.vme_am_code =  VME_AM_STD_SUP_DATA;  /* 0x3d */ 
 pci_slave_image.vme_data_width =  UNI_VMEBUS_DATAWIDTH_8; 
 pci_slave_image.posted_writes =  TRUE; 
   
/* show PciSlave mapping before and after setup */ 
 printf("===>uniImageShow before remapping\n"), 
 uniImageShow(); 
 printf("\n"); 
  
 if (PciSlaveImage1Set(pinfo) == ERROR) return ERROR; 
 printf("===> uniImageShow after re-mapping of PciSlave 1\n"); 
 uniImageShow(); 
 printf("\n"); 
 
 /* map from TSVME A24 jumper base address with pointer arithmetic for RAM/ROM acccess */ 
 vmeAdr = TSVME_BADR; 
 if (sysBusToLocalAdrs(VME_AM_STD_SUP_DATA, (char*)vmeAdr, (void**)&vmePtr) == ERROR) 
 { 
  printf("TSVME: could not translate the VME address, check AM value\n"); 
  PciSlaveImage1Default(); 
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  return ERROR; 
 } 
 
 printf("TSVME base address 0x%x is mapped to local BSP address 0x%x\n", vmeAdr, vmePtr); 
 
 printf("\nDumping start of TSVME ROM\n");  
 for(off=0; off<0x40; ++off) 
 { 
  if (off%16 == 0) printf("0x%6x", vmeAdr + TSVMEadroffROM + off); 
  printf(" %02x", *((unsigned char*)vmePtr + TSVMEadroffROM + off));  
  if (off%16==15) printf("\n"); 
 } 
  
 printf("\nWriting to TSVME RAM with readback\n"); 
  
                ---- your job to fill in this code ---- 
   
 /* set PciSlaveImage 1 back to default setting */ 
 if (PciSlaveImage1Default() == ERROR) return ERROR; 
 printf("\n"); 
 return OK;  
} 
 

4 M5000 target for Workbench 
 

A VxWorks target “tgt_192.168.0.12” is defined on both lab PCs. However, the 
M5000 must be booted via COM1 terminal on PC-2, see RTlab-1. 
 
Note, only one Workbench user can be connected at a time. If your neighbor insists 
on using the target then disconnect and wish her good luck. 
 
A project must be built for PPC440sfgnu. 
 

4.1 Additional	header	files	for	M5000	
These files are not contained in the default header directory. This is signaled as shown 
in Figure 11. 
 
Use the Add Folder command to include the directories shown in Figure 12, and 
move the three additional paths up to the top, see Figure 13. 
 
 
 



 

Figure 11  Include Search Paths for MIDAS MM5000 BSP 
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5 Add-on for FYS9220 students – DMA transfers 
 
Using RTlab-3.c as basis, allocate a PCI address area with cacheDmaMalloc(size), fill it 
with some intelligent information, DMA transfer it to the TSVME RAM, read it back 
and compare. 
 
STATUS  uniDmaLibInit() seems that it shall be called without parameters 
STATUS  uniDmaDirect(….) execute a DMA transfer according to the parameters. 

PCI and VME start addresses are mapped with 
sysBusToLocalAdrs(). The PCI address area is allocated 
with  cacheDmaMalloc(size), which defines a cache safe  

   safe buffer, see BSP User Guide p. 29. 
 
One can also set up  a chained DMA list between the same memories using the BSP 
functions uniDmaChainCmdPktCreate() and uniDmaChain(). 

 
Note! 
 
DMA functions use the library uniDmaLib.o. Download the library to the target from  
 

C:/WindRiver/vxworks-6.2/target/config/m5000-bsp2.0-r2.0/mdrv/lib  
 
 
 
 


