6 Nov 2011 /TBS

FYS4220 /9220

RT-lab no 3 - 2011

MIDAS M5000 SBC and VME

1 Scope of the exercise

This purpose of RT-lab 3 twofold:

1) A first order introduction to a Single Board Computer, the MIDAS M5000;
2) An example of communication with a VME module from the M5000.

For FYS9220 students an additional task is added, see end of document.

1.1 MIDAS M5000

The M5000 is a Single Board Computer (SBC) in VME format with the PPC440
processor. The MIDAS M5000 family is a product from the company VMETRO for
the professional signal processing market, in particular military, which is also
reflected by the price. VMETRO was bought in 2009 by the US Company Curtiss
Wright! . See also http://www.cwcembedded.com

” HiLL r””””””””””. mnmnnrnn"nnn”r |'|.- Apdpdddddidd;
Figure 1 The MIDAS M5000 — VME version. Two PMCs can be mounted on the 2x4 PCI connectors.

! Yes, the name Wright is related to the brothers who invented and build the world's first successful airplane and
making the first controlled, powered and sustained heavier-than-air human flight, on December 17, 1903

Product Overview VIMmE '|"R(')n

1.1 Main features:

* A PowerPC processor subsystem (440GX from IBM) with up DR-SDRAM
0

DDR.
memory, 32MiB of FLASH memory. four Ethernet ports (two 10/100/1000Mbps and two 10/
100Mbps) and two serial ports.

* Two standard PPMC siles located on separate PCI segments (64-bit, 33/66MHz PCI, 66/100/
133MHz PCI-X). In addition, PMC#1 can be MONARCH

* Dual 2Gib Fibre Channel 1/0 Controller (ISP2312 from QLOGIC) (Optical)

+ Single 10/100 Ethernet port (front panel connector)

+ Dual serial ports configurable as two RS-232 ports or one RS-232 and one RS-422
* PCI-to-VME bridge (Universe 11D from Tundra)

* Three PCI(X)-t0-PCI(X) bridges which connects the different PCI(-X) segments together
(PCI6540 from PLX)

* Optional PCI-to-RACEway bridge (PXB++ from Mercury)

* Optional 1/0 Spacer extension via a built-in connector, thus adding up to 3 Ethernet ports (One
Fast Ethernet 10/100 SMII and two Gigabit Ethernet 10/100/1000 RGMII) and an 12C bus.
Note: Adding more than one Gigabit Ethernet port will reduce the number of Fibre Channel
ports

+ Optional mezzanine extension via a built-in connector, thus adding 3 PMC sites to the
Quaternary PCI segment. These PMC sites are 64-bit, 33MHz PCI. 5V signaling.

* One PIM /O board slot, in accordance to VITA36.

to 256MiR local

FIGURE 1-1
Component Two B4/100 Wz PCHX Dl 2 G crvboard
Overview PAIC stes (PYPAC) Fien Charnel
PMC #2 .
b |
]
1
n
n
I
F- n
n
Tertary PCH ! L]
sagment L
: 1
7= H
. !
{ ez |
Optional PCI o -
RACEway bridge WO spcer extenmen sddng
PRBes) e | PEB 2Gibis Ehemet ports andior
SOGMEZZ for ackdtional 3
PAAC siots (B4)
Dufferertaly routed
P20 and PO-I0 fer
hgh wpeed
IStartate)
2 M35000 Series: User Guide Issued June 20, 2007

Figure 2 MIDAS M5000 main features

The on-board interconnection busses are via four PCI segments. The Universe chip
bridges one PCI bus to VMEbus.

4.1 Introduction

The PMC subsystem is composed of two 3.3V signalling PMC sites and is located on two PCI(-X)
segments called the Secondary and Tertiary PCI Segments. The connection between the two PCI(-
X) segments is provided by a PCI-X to PCI-X bridge.

FIGURE 4-1

PMC
Subsystem
Block Diagram PO P2
POIO P2I0
PMC PMC
PLX
s TR
PCI 1o PCI Bridge

The factory settings of the board switch configuration allows the bus frequency of the PCI-X
segments to be automatically configured to the frequency used by a PMC card insterted into it, and

by the limitation set with dip-switches 1 and 4. See “PCI-X Capability Selection for PMC Slots™ on
page 17.

Figure 3 MIDAS M5000 PMC system

1.1.1 The Universe PCI-to-VMEbus Bridge

The block diagram is shown in Figure 4 and the data flow diagram in Figure 5.

it Data

Register Channel
Configuration Registers,
Mailbox Registers, Semaphores

2091 ML ID0Y_0F

EEE1 149 1 Boundary 5

Figure 4 Block diagram of Universe PCI-VMEDbus bridge

Figure 3: Universe Il Data Flow Diagram

DMA Channel
PCIl Bus o] OMA bidirectional FIF Ol VMEbus
Interface Interface
| VMEbus Slave Channel 1
I 1
- PCI ! | posted writes FIFO | VME =
=| Master W | prefetch read FIFO | Slave Il =
: coupled read :
U - i
: PCI Bus Slave Channel :
1 1
PCI A PCI posted writes FIFO | ! VME = e
alm B - > : Mast VMEbus
BUS : ave coupled read logic (asier
: :
IS P R S |
[|ttt o bl o il O e M 1
: Interrupt Channel :
1
; PCI | Interrupt Handler | VME ! &
- 1| Interrupts [Interrupter = Interrupts T" o
1
! A -
.| e] et o ‘
L waocsmol
Register Channel

= Wb Regetas t—
Semaphores

Figure 5 Data Flow diagram

Altogether 8 VME Slave images and 8 PCI slave images can be defined. Each VME
Slave image opens a window to the resources of the PCI bus and, through its specific
attributes, allows the user to control the type of access to those resources.
Correspondingly, a PCI Slave image opens a window for VMEbus Master operations.

For more information on the Universe registers it is referred to the documentation.

2 The VxWorks BSP for MIDAS M5000

The M5000 BSP uses the PPC440 MMU (Memory Management Unit) for virtual
addressing. The address map is shown in Figure 6 .

At boot time some default mapping is set up; see Figure 7 (from RTlab-1).
The BSP contains a large number of system calls, only those relevant for VME access

is commented here. For a deep pleasure of understanding the complete spectrum of
BSP functions it is referred to the documentation.

1.3 M5xxx Address Maps and Address Space Mapping

The address map layouts (CPU and PCI) for the M5xxx BSP implementation are as follows. These
maps are shown as supported with the default PCI auto-configuration. Manual PCI configuration is
not currently supported by the M5xxx BSP. A detailed look at PCI address space assignment is
given in the section of PCI bus layout.

TABLE 1-2. M5xxx BSP 32-bit Effective (Virtual) Address Map with PCI Auto-config (default)

Address range Resource Mapped

Mapped by

© PCI outbound translation window MMU TLB Entry with prefetch

0x%c0000000-0xe FEEFEEES PCI outbound translation window MMU TLB Entry without prefetch
0x£f0000000-0xfOfE£EEE Internal CPU Peripherals MMU TLB Entry
0xf1000000-0xf1££££EE 120 MMU TLE Entry
0xf2000000-0xf2££E££EE SRAM MMU TLE Entry
0x£3000000-0xE4££E££EE FLASH memory (cached) MMU TLB Entry
0x£5000000-0xES5E£££EE PLD MMU TLE Entry
0x£f8000000-0xfbffffff PCI I/0 outbound MMU TLB Entry
0xfc000000-0xfdfE£EEE Not mapped-available =

0xfd000000-0OxfdfEE£EF PCI-X bridge MMU TLB Entry
0xfe000000-OxEfE£EEEEEE FLASH memory (non-cached) MMU TLEEntry

a. The cached and non-cached regions access the same physical SDRAM.
b. User configurable through NONCACHEABLE MEMORY SIZE
c. User configurable through PCI_MASTER PREFETCHABLE POOL_SIZE

Regions marked “Not mapped--available” can provide addressing to PCIbus resources. To enable
access to these regions, the PPC440GX MMU must be initialized appropriately. This is done by
adding entries to the svsStaticTIbDesc|] array found in svsLib.c. See the svsStaticTIbDesc|| array
in "sysLib.c" for more details.

Figure 6 Mb5xxx Address Map

& woworks1 - HyperTerminal

FBle Edt View Cal Iransfer Heb
DiF &8 0B

[VxWorks Boot]: @ ~
boot device : emac

unit numbexr 0

processor number)

host name : fys-lab-sci-02
file name : vxworks

inet on ethernet (e) : 192.168.0.12
host inet (h) : 192.168.0.13
gateway inet (g) : 192.168.0.1

user (u) : vxworks

ftp password (pw) : vxworks

flags (£) : Ox4

target name (tn) ¢ tgt_192.168.0.12

Attaching interface lo0... done
Attached IPv4 interface to emac unit 0
Loading... 1882800

Starting at 0x10000...

Auto configuring PCI devices ...

Reserved Universe A32 sp at 0 , size:0x11000000

Reserved Universe A24 space at O0xdl1000000, size:0x1000000

Reserved Universe Al6 space at 0xd2000000, size:0x10000

Ruto configuration finished. -
£ L i >
Connected 0:02:51 Auko detect 9600 8-N-1 SCROLL | CAPS | um | Cepture | Printecho i |

Figure 7 Universe bridge VME A32/A23/A16 configuring at boot time

An overview of the access of VME address space is shown in Figure 8.

5.1 VME Master & Slave Access Configuration

Overview

This chapter defines terminology, and configuration macros that together provide a guideline for
how VME master/slave windows can be configured in the M5xxx BSP. The standard frame of
reference shall be the perceived view by the user and the local CPU (i.e. the PPC440GX). A master
transaction is one where the M5xxx board takes control of the VME bus and initiates a VME
transaction. A slave transaction is one where the M35xxx board responds as a VME bus slave device
1o a transaction initiated by some other board acting as VME bus master.

On the M5xxx, the VME interface is controlled with the Tundra Universe 11D chip (hereafter called
the Universe). The Universe databook[5] describes all the registers in the Universe and is a very
useful resource to have handy when working with the Universe. In the terminology of the Universe,
VME master windows are called "PCI slaves". Sometimes VME slaves are referred to as PCI
masters. In other words. "VME slaves" are the same as "PCI masters" and "PCI slaves" are the
same as “VME masters".

The Universe supports a maximum of 8 PCI slave images and 8 VME slave images. An "image" in
Universe terminology is essentially just a "window" in address space through which one bus can
access the other. There are functions available in the BSP to configure both PCI and VME slave
images, and all of these functions are reviewed in this section. These functions are
uniPciSlaveImageSet(), uniVmeSlaveImageSet(), and univmeslaveImageSetup(). One
useful function for reviewing Universe slave images 1s uniImagesShow(). This function provides
information about all of the currently defined Universe slave images (both PCI and VME) and their
attributes. Other useful functions are sysBusToLocalAdrs() and sysLocalToBusAdrs() which
are documented in the PCI section above.

By default, the PPC440GX BSP uses 3 PCI slave images and 1 VME slave image. The sections
below review the default slave image configurations. Using parameters in the vmbsp.ini file, one
additional PCI slave image and one additional VME slave image may be defined. Please see the
section of the manual on the vmbsp.ini file for more details.

Note — The VME slave bases of the M5xxx board are set in software (see below), not by hardware
jumpers. To change the bases from the default values. edit the VME Master/Slave Access
Window Macros in sysVme. h.

Figure 8 VME Access Configuration

To access a VMEDbus location there are three actions to be taken:

=

Set up a PCI Slave image with uniPciSlavelmageSet , Figure 9.

Map to the VME address space with sysBusToLocalAdrs , Figure 10.

3. By now one shall have a pointer to the VME base address, and a VME address
is accessed by a pointer operation.

N

In other words, a piece of cake!

Instead of accessing individual VME addresses one can set up a DMA transfer. By
using the linked list feature of Universe a sequence of DMA transfers can be defined.

uniPciSlavelmageSet

Synopsis STATUS uniPciSlaveImageSet
(

int image,

UINT32 pciBase,

UINT32 vmeBase,

UINT32 size,

UINT32 pcihddrSpace,

UINT32 wvmeAmCode,

UINT32 vmeDataWidth,

BOOL postedWrites

)
image - the Universe PCI slave image number, from 0 - 7
pciBase - the PCI base address of the window
vmeBase - the VME base address of the window
size - the size of the window in bytes
pcidddrSpace - the PCI address space. The value can be either UNI_PCI_MEMORY_SPACE (0),
UNI_PCI_IO_SPACE (1), or UNI_PCI_CFG_SPACE (2).
vmeAmCode - the VME AM code; specifying a "block” type AM code also implies that the similar AM code
corresponding to "single” cycles will also be supported by the window.
vmeDataWidth - the data width supported by the window. The value can be either
UNI_VMEBUS_DATAWIDTH 8 (0), UNI_VMEBUS_DATAWIDTH_lé (1),
UNI_VMEBUS_DATAWIDTH_ 32 (2), or UNI_VMEBUS_DATAWIDTH_64 (3)
postedWrites - whether the window allows posted (cached) writes. The value should be either TRUE (1) or
FALSE (0).

Description This function is used to configure a Universe PCI slave image. This allows the M5xxx to act as a VME
master and read/write to other VMEbus devices configured as VME slaves.

Figure 9 Setting up a PCI slave image for VME access

sysBusToLocalAdrs

Synopsis STATUS sysBusToLocalAdrs (
int adrsSpace,
char *busAdrs,
char **pLocallAdrs
)

adrsSpace - Represents the bus address space in which busAdrs resides. The value can be one of the
following:PCI_SPACE_IO_ PRI (0x40) - 32-bit PCI /O Space

PCI_SPACE_MEMIO_PRI (0x41) - Non-cacheable PCI Memory Space

PCI_SPACE MEM PRI (0x42) - Cacheable PCI Memory Space

PCI_SPACE IO16 PRI (0x43) - 16-bit PCI IO Space

A supported VMEbus AM code (see section on VMEbus).

bushdrs - the bus address to be converted to a local address
pLocalAdrs - holds the returned local address equivalent of the busAdrs if it exists

Description This function converts a bus address to a local address. The function can be used with both PCI and VME
address spaces. If the given bus address can be converted to a local address, the local address is placed in
pLocal Adrs and the function returns OK. Otherwise, ERROR is returned. Note that an adrsSpace value of
PCI_SPACE_CFG_PRI is not supported. In other words, sysBusToLocal Adrs() cannot be used to
determine the local address space equivalent for PCI Config Space because there is no such direct
address mapping between local and PCI configuration space.

Returns OK, or ERROR.

Figure 10 Mapping to a VME bus address

How does one specify the actual PCI Slave Image for sysBusToLocalAdrs ? Good
question, because it is not described in the documentation as far as | can see.

The answer is that the routine selects the first Slave Image, starting from no. 0, which
matches the VMEbus AM code! Therefore one must configure a PCI Slave Image if

none of the default settings do not match. From the printout in RTlab-3 one observes
that PCI Slave Images 0, 1 and 2 are set up at boot time with data width D32 and AM
(Address Modifier) code 2d, 3d and Od, respectively.

3 RTlab-3.c

The source code is written for a module (TSVME) which is an interface for the HP-1B
instrumentation bus. However, what is relevant for this exercise is that the module
contains two memory blocks, a ROM and a RAM.

The base address bits 23-16 is set up by switches to 0xF00000.
The code should be self-explanatory. The module is accessed by A24 and D8.

Disclaimer: do not use this source; download it from the FYS4220 web.

/* RTlab-3.c - FYS4220 2011 */
/* B. Skaali copyright */

#define VXWORKS
#define M5000

#include <vxworks.h>
#include <taskLib.h>
#include <pci.h>
#include <sysLib.h>
#include <MidasPciLib.h>
#include <pciConfigLib.h>
#include <uniLib.h>
#include <sysVme.h>
#include <vme.h>
#include <uniDmalLib.h>
#include "stdio.h"

void unilmageShow();

/* Pci slave image 1 default mapping */
UINT32 pciBaseld = 0xD1000000,
vmeBaseld = 0x00000000,
sizeld = 0x01000000,
pciAddrSpaceld = UNI_PCI_MEMORY_SPACE,
vmeAmCodeld = VME_AM_STD_SUP_DATA,
vmeDataWidthld = UNI_VMEBUS_DATAWIDTH_32;
BOOL postedWritesld = TRUE;

typedef struct VME_PCISLAVE_INFO {
UINT pci_base_adr;
UINT vme_base_adr;
UINT vme_size;
UINT pci_addr_space;
UINT vme_am_code;
UINT vme_data_width;
BOOL posted_writes;
} VME_PCISLAVE_INFO;

/* some handy routines */
UINT32 swapendian (UINT32 val)
{
return (((0xff000000 & val)>>24) + ((0x00ff0000 & val)>>8)
+ ((0x0000ff00 & val)<<8)

+ ((0X000000ff & val)<<24));

}
UINT32 bitfield (UINT32 val, UINT32 mask, int shift)
{

return ((swapendian(val) & mask) >> shift);
}

/* PciSlave stuff */

STATUS PciSlavelmagelSet(VME_PCISLAVE_INFO *info)

{
intimage = 1,
if (uniPciSlavelmageSet (image,
info->pci_base_adr,
info->vme_base_adr,
info->vme_size,
info->pci_addr_space,
info->vme_am_code,
info->vme_data_width,
info->posted_writes)
== ERROR) return ERROR,;
return OK;
}
STATUS PciSlavelmagelDefault()
{
intimage = 1,
if (uniPciSlavelmageSet (image, pciBaseld, vmeBaseld, sizeld, pciAddrSpaceld,
vmeAmCodeld, vmeDataWidth1ld, postedWrites1ld) == ERROR) return ERROR;
return OK;
}
[* TSVME module base addresses for RAM, ROM and jumper setting */
#define TSVME_RAM 0x8000;
#define TSVME_ROM 0xC000;
#define TSVME_BADR 0x00F00000;

UINT32 TSVMEadroffRAM = TSVME_RAM;
UINT32 TSVMEadroffROM = TSVME_ROM,;

STATUS tsvme()

uint32_t vmePtr;
uint32_t vmeAdr;
int off;

/* set up PCI Slave image for the TSVME module */
VME_PCISLAVE_INFO pci_slave_image;
VME_PCISLAVE_INFO *pinfo = &pci_slave_image;

pci_slave_image.pci_base_adr = 0xD1000000;

pci_slave_image.vme_base_adr = 0x00000000;

pci_slave_image.vme_size = 0x01000000;

pci_slave_image.pci_addr_space = UNI_PCI_MEMORY_SPACE;
pci_slave_image.vme_am_code = VME_AM_STD_SUP_DATA, [* 0x3d */
pci_slave_image.vme_data_width = UNI_VMEBUS_DATAWIDTH_S8;
pci_slave_image.posted_writes = TRUE;

/* show PciSlave mapping before and after setup */

unilmageShow();
printf("\n");

if (PciSlavelmagelSet(pinfo) == ERROR) return ERROR;
printf("===> unilmageShow after re-mapping of PciSlave 1\n");
unilmageShow();

printf("\n");

/* map from TSVME A24 jumper base address with pointer arithmetic for RAM/ROM acccess */
vmeAdr = TSVME_BADR;
if (sysBusTolLocalAdrs(VME_AM_STD_SUP_DATA, (char*)vmeAdr, (void**)&vmePtr) == ERROR)
{
printf("TSVME: could not translate the VME address, check AM value\n");
PciSlavelmagelDefault();

return ERROR;
}

printf("TSVME base address 0x%x is mapped to local BSP address 0x%x\n", vmeAdr, vmePtr);

printf("\nDumping start of TSVME ROM\n");
for(off=0; off<0x40; ++off)

if (0ff%16 == 0) printf("0x%6Xx", vmeAdr + TSVMEadroffROM + off);
printf(" %02x", *((unsigned char*)vmePtr + TSVMEadroffROM + off));
if (off%16==15) printf("\n");

}

printf("\nWriting to TSVME RAM with readback\n");
---- your job to fill in this code ----

/* set PciSlavelmage 1 back to default setting */

if (PciSlavelmagelDefault() == ERROR) return ERROR;
printf("\n");

return OK;

4 M5000 target for Workbench

A VxWorks target “tgt_192.168.0.12" is defined on both lab PCs. However, the
M5000 must be booted via COML1 terminal on PC-2, see RTlab-1.

Note, only one Workbench user can be connected at a time. If your neighbor insists
on using the target then disconnect and wish her good luck.

A project must be built for PPC440sfgnu.

4.1 Additional header files for M5000

These files are not contained in the default header directory. This is signaled as shown
in Figure 11.

Use the Add Folder command to include the directories shown in Figure 12, and
move the three additional paths up to the top, see Figure 13.

10

% Generate Include Search Paths E]

Configure the Include Search Path

Add and remove folders to the Include Search Path and define their
ordering.

Found S Unresolved Include Directives:
I _idaspcilib.h> [1]
“— <pciConfiglib.h> [1]
- <sys'«‘me.h> [1] Resolve All
4~ <uniDmalib.h> [1] Show in Editor
“— <uniLib.h> [1]

Include Search Paths

| @ (= $(WIND_BASE)jtarget/h Add Folder...
= $(WIND_BASE)/target/hfwrnfcoreip

1l

Remove

[< Back]I Next >] Cancel

Figure 11 Include Search Paths for MIDAS M5000 BSP

% Generate Include Search Paths E]

Configure the Include Search Path

Add and remove folders to the Include Search Path and define their ordering.
‘Resolve All' will do its best to calculate a search path fFor you.

Found 0 Unresolved Include Directives:

Include Search Paths

| ® (= $(WIND_BASE)/target/h
= $(WIND_BASE)/target/hfwrnfcoreip
& (= $(WIND_BASE)/target/config/mS000-bsp2.0-r2.0fmdrv/include
= $(WIND_BASE)/target/h/drv/pci
(= $(WIND_BASE)target/config/mS000-bsp2.0-r2.0

[<Back | mext> | For Cancel

Figure 12 Add Include folders

% Generate Include Search Paths E]

Configure the Include Search Path

Add and remove folders to the Include Search Path and define their ordering.
‘Resolve All' will do its best to calculate a search path fFor you.

Found 0 Unresolved Include Directives:

Include Search Paths

| ® (& $(WIND_BASE)/targetjconfig/mS000-bsp2.0-r2.0
(= $(WIND_BASE)target/config/mS000-bsp2.0-r2.0{mdrvfinclude
(= $(WIND_BASE)/target/hjdrv/pci
(= $(WIND_BASE)target/h
(= $(WIND_BASE)/targetfhjwrnfcoreip

[<Back | mext> |

Resolve all

Up

Remove

Figure 13 Include Search Paths after re-organization

13

4.2 Success!
A working RTlab-3 program should present output something like Figure 14.

cv tgt_192.168.0.120@fys-lab-sci-02 - Host Shell

PWEN UDW

FWEN PREN LD&4 LRMW

LRMW

Weitin

Figure 14 Output from RTlab-3.c with RAM write and read back implemented

4.3 Logic state analyzer

The activity on the VMEDbus can be displayed by means of a connected LSA in timing
mode, see instructions on the LSA. Bus analyzers are very useful for debugging.

14

5 Add-on for FYS9220 students — DMA transfers

Using RTlab-3.c as basis, allocate a PCI address area with cacheDmaMalloc(size), fill it

with some intelligent information, DMA transfer it to the TSVME RAM, read it back

and compare.

STATUS uniDmaLiblnit() seems that it shall be called without parameters

STATUS uniDmabDirect(....) execute a DMA transfer according to the parameters.
PCI and VME start addresses are mapped with
sysBusToLocalAdrs(). The PCI address area is allocated
with cacheDmaMalloc(size), which defines a cache safe
safe buffer, see BSP User Guide p. 29.

One can also set up a chained DMA list between the same memories using the BSP
functions uniDmaChainCmdPktCreate() and uniDmaChain().

Note!
DMA functions use the library uniDmalL.ib.o. Download the library to the target from

C:/WindRiver/vxworks-6.2/target/config/m5000-bsp2.0-r2.0/mdrv/lib

15

