

1

This

For

1.1
The
proc
the
refle
Wri

Figu

1 Yes
maki

Scope

s purpose o

1) A first o
2) An exam

r FYS9220

1 MIDAS
e M5000 is a
cessor. The
professiona
ected by the
ight1 . See a

re 1 The MID

s, the name Wri
ing the first con

MIDA

of the e

f RT-lab 3 t

order introd
mple of com

students an

S	M5000	
a Single Bo
MIDAS M

al signal pro
e price. VM
also http://ww

DAS M5000 – V

ight is related to

ntrolled, powere

FYS

RT-la

AS M50

exercise

twofold:

duction to a
mmunicatio

n additiona

oard Compu
M5000 family
ocessing ma

METRO was
ww.cwcemb

VME version.

o the brothers w
ed and sustained

S4220 / 9

ab no 3 -

000 SB

e

Single Boa
on with a VM

al task is ad

uter (SBC) i
y is a produ

arket, in par
s bought in 2
edded.com

Two PMCs ca

who invented an
d heavier-than-

9220

 2011

BC and

ard Compute
ME module

dded, see en

n VME form
uct from the
ticular milit
2009 by the

an be mounted

nd build the wo
air human fligh

6 No

d VME

er, the MID
from the M

nd of docum

mat with th
e company V
tary, which
e US Compa

on the 2x4 PC

orld's first succe
ht, on December

ov 2011 /TBS

DAS M5000
M5000.

ment.

he PPC440
VMETRO f
is also

any Curtiss

CI connectors.

essful airplane a
er 17, 1903

1

S

0;

for

and

Figu

The
brid

re 2 MIDAS M

e on-board i
dges one PC

M5000 main fe

nterconnect
CI bus to VM

eatures

tion busses
MEbus.

are via fourr PCI segmeents. The UUniverse chip

2

p

Figu

1.1

The

Figu

re 3 MIDAS M

.1 The	Un

e block diag

re 4 Block dia

M5000 PMC sy

niverse	PC

gram is show

agram of Unive

ystem

CI‐to‐VMEb

wn in Figure

erse PCI-VME

bus	Bridge

e 4 and the

Ebus bridge

e	

data flow diagram in F

Figure 5.

3

Figu

Alto
Slav
attri
Cor

For

2

The
addr

At b

The
is co
BSP

re 5 Data Flow

ogether 8 V
ve image op
ibutes, allow
rresponding

more inform

The Vx

e M5000 BS
ressing. The

boot time so

e BSP conta
ommented h
P functions

w diagram

VME Slave i
pens a wind
ws the user
ly, a PCI Sl

mation on t

xWorks

SP uses the
e address m

ome default

ains a large n
here. For a
it is referre

images and
dow to the re

to control th
lave image

the Universe

BSP fo

PPC440 MM
map is shown

t mapping is

number of s
deep pleasu
d to the doc

8 PCI slave
esources of
he type of a
opens a win

e registers i

or MIDA

MU (Memo
n in Figure

s set up; see

system calls
ure of under
cumentation

e images can
f the PCI bus
access to tho
ndow for VM

it is referred

S M500

ory Manage
6 .

e Figure 7 (

s, only those
rstanding th
n.

n be defined
s and, throu
ose resource
MEbus Mas

d to the docu

00

ement Unit)

(from RTlab

e relevant fo
e complete

d. Each VM
ugh its speci
es.
ster operatio

umentation.

for virtual

b-1).

for VME acc
spectrum o

4

ME
ific

ons.

.

cess
of

Figu

Figu

re 6 M5xxx A

re 7 Universe

Address Map

bridge VME AA32/A23/A16 cconfiguring at boot time

5

An

Figu

To a

In o

Inst
usin

overview o

re 8 VME Acc

access a VM

1. Set up a
2. Map to
3. By now

is acces

other words,

tead of acce
ng the linked

f the access

cess Configura

MEbus locat

a PCI Slave
the VME a

w one shall h
ssed by a po

, a piece of

essing indivi
d list featur

s of VME ad

ation

tion there ar

e image with
address spac
have a point
ointer opera

cake!

idual VME
re of Univer

ddress spac

are three acti

h uniPciSla
ce with sysB
ter to the V

ation.

addresses o
rse a sequen

e is shown

ions to be ta

aveImageSe
BusToLoca
ME base ad

one can set
nce of DMA

in Figure 8.

aken:

et , Figure 9
alAdrs , Fig
ddress, and

up a DMA
A transfers c

.

9.
gure 10.
a VME add

transfer. By
can be defin

6

dress

y
ned.

Figu

Figu

How
que

re 9 Setting up

re 10 Mappin

w does one
stion, becau

p a PCI slave i

ng to a VME bu

specify the
use it is not

image for VME

us address

actual PCI
described i

E access

Slave Imag
in the docum

ge for sysBu
mentation as

usToLocalA
s far as I can

Adrs ? Goo
an see.

7

od

 8

The answer is that the routine selects the first Slave Image, starting from no. 0, which
matches the VMEbus AM code! Therefore one must configure a PCI Slave Image if
none of the default settings do not match. From the printout in RTlab-3 one observes
that PCI Slave Images 0, 1 and 2 are set up at boot time with data width D32 and AM
(Address Modifier) code 2d, 3d and 0d, respectively.

3 RTlab-3.c

The source code is written for a module (TSVME) which is an interface for the HP-IB
instrumentation bus. However, what is relevant for this exercise is that the module
contains two memory blocks, a ROM and a RAM.

The base address bits 23-16 is set up by switches to 0xF00000.

The code should be self-explanatory. The module is accessed by A24 and D8.

Disclaimer: do not use this source; download it from the FYS4220 web.

/* RTlab-3.c - FYS4220 2011 */
/* B. Skaali copyright */

#define VXWORKS
#define M5000

#include <vxworks.h>
#include <taskLib.h>
#include <pci.h>
#include <sysLib.h>
#include <MidasPciLib.h>
#include <pciConfigLib.h>
#include <uniLib.h>
#include <sysVme.h>
#include <vme.h>
#include <uniDmaLib.h>
#include "stdio.h"

void uniImageShow();

/* Pci slave image 1 default mapping */
UINT32 pciBase1d = 0xD1000000,
 vmeBase1d = 0x00000000,
 size1d = 0x01000000,
 pciAddrSpace1d = UNI_PCI_MEMORY_SPACE,
 vmeAmCode1d = VME_AM_STD_SUP_DATA,
 vmeDataWidth1d = UNI_VMEBUS_DATAWIDTH_32;
BOOL postedWrites1d = TRUE;

typedef struct VME_PCISLAVE_INFO {
 UINT pci_base_adr;
 UINT vme_base_adr;
 UINT vme_size;
 UINT pci_addr_space;
 UINT vme_am_code;
 UINT vme_data_width;
 BOOL posted_writes;
} VME_PCISLAVE_INFO;

/* some handy routines */
UINT32 swapendian (UINT32 val)
{
 return (((0xff000000 & val)>>24) + ((0x00ff0000 & val)>>8)
 + ((0x0000ff00 & val)<<8)

 9

 + ((0x000000ff & val)<<24));
}

UINT32 bitfield (UINT32 val, UINT32 mask, int shift)
{
 return ((swapendian(val) & mask) >> shift);
}

/* PciSlave stuff */

STATUS PciSlaveImage1Set(VME_PCISLAVE_INFO *info)
{
 int image = 1;
 if (uniPciSlaveImageSet (image,

 info->pci_base_adr,
 info->vme_base_adr,

 info->vme_size,
 info->pci_addr_space,
 info->vme_am_code,
 info->vme_data_width,
 info->posted_writes)
 == ERROR) return ERROR;
 return OK;
}

STATUS PciSlaveImage1Default()
{
 int image = 1;
 if (uniPciSlaveImageSet (image, pciBase1d, vmeBase1d, size1d, pciAddrSpace1d,
 vmeAmCode1d, vmeDataWidth1d, postedWrites1d) == ERROR) return ERROR;
 return OK;
}

/* TSVME module base addresses for RAM, ROM and jumper setting */
#define TSVME_RAM 0x8000;
#define TSVME_ROM 0xC000;
#define TSVME_BADR 0x00F00000;

UINT32 TSVMEadroffRAM = TSVME_RAM;
UINT32 TSVMEadroffROM = TSVME_ROM;

STATUS tsvme()
{
 uint32_t vmePtr;
 uint32_t vmeAdr;
 int off;

/* set up PCI Slave image for the TSVME module */
 VME_PCISLAVE_INFO pci_slave_image;
 VME_PCISLAVE_INFO *pinfo = &pci_slave_image;

 pci_slave_image.pci_base_adr = 0xD1000000;
 pci_slave_image.vme_base_adr = 0x00000000;
 pci_slave_image.vme_size = 0x01000000;
 pci_slave_image.pci_addr_space = UNI_PCI_MEMORY_SPACE;
 pci_slave_image.vme_am_code = VME_AM_STD_SUP_DATA; /* 0x3d */
 pci_slave_image.vme_data_width = UNI_VMEBUS_DATAWIDTH_8;
 pci_slave_image.posted_writes = TRUE;

/* show PciSlave mapping before and after setup */
 printf("===>uniImageShow before remapping\n"),
 uniImageShow();
 printf("\n");

 if (PciSlaveImage1Set(pinfo) == ERROR) return ERROR;
 printf("===> uniImageShow after re-mapping of PciSlave 1\n");
 uniImageShow();
 printf("\n");

 /* map from TSVME A24 jumper base address with pointer arithmetic for RAM/ROM acccess */
 vmeAdr = TSVME_BADR;
 if (sysBusToLocalAdrs(VME_AM_STD_SUP_DATA, (char*)vmeAdr, (void**)&vmePtr) == ERROR)
 {
 printf("TSVME: could not translate the VME address, check AM value\n");
 PciSlaveImage1Default();

 10

 return ERROR;
 }

 printf("TSVME base address 0x%x is mapped to local BSP address 0x%x\n", vmeAdr, vmePtr);

 printf("\nDumping start of TSVME ROM\n");
 for(off=0; off<0x40; ++off)
 {
 if (off%16 == 0) printf("0x%6x", vmeAdr + TSVMEadroffROM + off);
 printf(" %02x", *((unsigned char*)vmePtr + TSVMEadroffROM + off));
 if (off%16==15) printf("\n");
 }

 printf("\nWriting to TSVME RAM with readback\n");

 ---- your job to fill in this code ----

 /* set PciSlaveImage 1 back to default setting */
 if (PciSlaveImage1Default() == ERROR) return ERROR;
 printf("\n");
 return OK;
}

4 M5000 target for Workbench

A VxWorks target “tgt_192.168.0.12” is defined on both lab PCs. However, the
M5000 must be booted via COM1 terminal on PC-2, see RTlab-1.

Note, only one Workbench user can be connected at a time. If your neighbor insists
on using the target then disconnect and wish her good luck.

A project must be built for PPC440sfgnu.

4.1 Additional	header	files	for	M5000	
These files are not contained in the default header directory. This is signaled as shown
in Figure 11.

Use the Add Folder command to include the directories shown in Figure 12, and
move the three additional paths up to the top, see Figure 13.

Figure 11 Include Search Paths for MIDAS MM5000 BSP

11

Figu

re 12 Add Incclude folders

12

Figu

re 13 Include Search Paths after re-organ

nization

13

4.2
A w

Figu

4.3
The
mod

2 Succes
working RTl

re 14 Output

3 Logic	s
e activity on
de, see instr

s!	
lab-3 progra

from RTlab-3

state	anal
n the VMEb
ructions on

am should p

.c with RAM w

lyzer	
bus can be d
the LSA. B

present outp

write and read

displayed by
Bus analyzer

put somethin

d back impleme

y means of a
rs are very u

ng like Figu

ented

a connected
useful for de

ure 14.

d LSA in tim
ebugging.

14

ming

 15

5 Add-on for FYS9220 students – DMA transfers

Using RTlab-3.c as basis, allocate a PCI address area with cacheDmaMalloc(size), fill it
with some intelligent information, DMA transfer it to the TSVME RAM, read it back
and compare.

STATUS uniDmaLibInit() seems that it shall be called without parameters
STATUS uniDmaDirect(….) execute a DMA transfer according to the parameters.

PCI and VME start addresses are mapped with
sysBusToLocalAdrs(). The PCI address area is allocated
with cacheDmaMalloc(size), which defines a cache safe

 safe buffer, see BSP User Guide p. 29.

One can also set up a chained DMA list between the same memories using the BSP
functions uniDmaChainCmdPktCreate() and uniDmaChain().

Note!

DMA functions use the library uniDmaLib.o. Download the library to the target from

C:/WindRiver/vxworks-6.2/target/config/m5000-bsp2.0-r2.0/mdrv/lib

